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1. INTRODUCTION

Smart materials such as SMA and piezoelectric materials offer promising
applications in many adaptive structures enabling the development of new
structural control. Potential applications include shape control of large space
structures, active noise and vibration control, flutter suppression, and
microservoelasticity in flight vehicles.

To deliver the maximum actuation power, piezoelectric actuators are
subjected to high electric fields and strains. The development of reliability and life
prediction methodologies for piezoceramics is of vital importance to the technology
of smart structures. The result of this research concerning the behavior of fracture
and fatigue crack growth in PZT piezoceramics under combined electrical and
mechanical loads is an important step to the aforementioned goal.

In general, to prolong the service life of piezoceramic actuators, electrical and
mechanical loads must be kept as low as possible. In other words, efficiencies of
actuation must be high. To achieve this goal, optimal placement of actuators must
be determined. In this project we also investigated a new type of adaptive
sandwich structure in which the piezoceramic actuator is placed between two stiff
face sheets. The thickness shear mode of actuation is utilized. This new
construction of adaptive structures was compared with the surface mounted design
commonly adopted by researchers.

The main text of this report summarizes the highlights of the results obtained
under this research project. Technical details can be found in the reproduction of
papers attached in the Appendix.




2. AFRACTURE CRITERION FOR PIEZOELECTRIC CERAMICS

Unlike non-piezoelectric materials, there are electric field effects on fracture
of piezoelectric materials. Due to this phenomenon, fracture criteria for non-
piezoelectric materials are not directly applicable. Some efforts have been made to
establish the fracture criterion for piezoelectric materials. Until now, the total
potential energy release rate has been proposed as the fracture criterion. However,
an unusual result was found in that the total potential energy release rate is always
negative in the absence of mechanical loading, and the presence of electrical
loading always reduces the total potential energy release rate, implying that the
electric field would impede crack propagation. Although experimental results are
still lacking, the few that exist contradict the behavior predicted by the total
potential energy release rate criterion.

2.1 Fracture Criteria

Stress Intensity Factor

Consider an infinite piezoelectric medium containing a center crack of length 2a.
The crack is parallel to the xp-axis and perpendicular to the x3-axis. Remote stresses

6%3 and 6%3 and electric displacement D% are applied. Using the conventionally
defined stress intensity factors and electric displacement intensity factor, stresses and
electric displacement at the crack tip in the crack plane, 6 = 0°, are given by

K11 Kiv
Gy =—=-, ©633=——=—, D3= e
23 N 27r 33 27r 3 N 27r

where Ky =+nac%3, Ky = Jrac%s, K1y =+naD¥

It is noted that stresses and electric displacement are uncoupled in this plane. This
indicates that the electric loading alone cannot produce mechanical stress in the crack
plane ahead of the crack tip and vice versa. If the stress intensity factor is used as a
fracture criterion, the effect of the electric field cannot be accounted for.

Total Energy Release Rate

Another fracture criterion for piezoelectric materials is based on the total energy
release rate. It includes mechanical and electrical energies released as the crack
propagates. and is given by

I= J;_[an —o{jnjuj? +DiE3ni]dF ij=23 (2)




where H =%c,jk,s,jsk, —%s,-jE,E —eusuE; is the electric enthalpy, I' is an integration
contour around the crack tip, n is the unit normal vector to the contour, Gys Sjs and E,
represent stress, strain and electric field, respectively, and ¢, e,, and €; represent

elastic constants, piezoelectric constants and dielectric permittivities, respectively.
Alternatively, J can be obtained by using the crack closure integral as

J=G= ;i_r)rg)% f {013(x,)80;(3 = %;) + D3 ()80 B-x,)Jdx, i=23 (3)

where & is the assumed crack extension and u, and ¢ are displacements and electric
potential, respectively.

Mechanical Strain Energy Release Rate

Considering the mechanical process of fracture, we proposed to use the
mechanical strain energy release rate as the fracture criterion for piezoelectric materials.
The mechanical strain energy release rate includes only mechanical strain energy released
as the crack propagates. The mechanical strain energy release rates can be calculated by
using the crack closure integrals as

1
G = lim > fcg (x5)Au3 (8 - x,)dx, 4)

|
Gﬁl = %l_r)%% f523 (x5)Au, (8 - x,)dx, )

for Mode I and Mode II, respectively.

The crack closure integrals given by (4) and (5) can be evaluated using nodal
forces and displacements with a finite element program. The use of finite elements
enables one to consider bodies of finite dimension as well as general loading conditions.

2.2 Experiments and Comparison with Prediction
2.2.1 Compact Tension Test

Mode I fracture experiments were conducted to verify the proposed strain
energy release rate as a fracture criterion using PZT-4 piezoelectric ceramics.
Fracture tests using compact tension specimens (see Figs. 1 and 2) were performed
for Mode 1 fracture. Throughout all the experiments, attention was focused on the
effect of electric fields on fracture.
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Fig. 1 Compact tension specimen for Mode I fracture test
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Fig. 2 Test setup for Mode I fracture

Using the fracture load 94 N obtained by the experiment for E;=0, i.e.,
fracture load in the absence of electric field, the finite element analysis was
performed. From this analysis, the critical value of the strain energy release rate,
G, was obtained as G,. =2.34(N/m). Using this critical strain energy release rate
for the PZT-4 piezoelectric ceramic, the fracture loads for other applied electric
fields were calculated and shown in Fig. 3. For comparison, the fracture loads
predicted according to the total energy release rate are also shown. The superiority
of the mechanical strain energy release rate over the total energy release rate
criterion is apparent. It is easy to see that the mechanical strain energy release rate
criterion predicts the effect of the electric field quite accurately.
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Fig. 3 Comparison of predictions and experimental fracture loads
obtained from compact tension specimens

2.2.2 Mixed Mode Fracture

Most mixed mode fracture experiments were performed using oblique crack
specimens. Due to the limitation of the size of piezoelectric ceramics, it is difficult
to make the oblique crack specimen an experimental model. The symmetric three
point bend specimen has been used extensively in obtaining Mode I plane strain
fracture toughness, Kjc. A three point bend specimen with an unsymmetrical crack
was adopted for mixed mode fracture.

Specimens were cut to 19.1x9x5.1 mm dimension and poling direction was
placed along the 19.1 mm dimension. Surfaces of the specimen were polished with
9 mm grain sized diamond abrasive paste. Cracks were introduced using a 0.46 mm
thick diamond wheel cutter at three different locations, i.e., the midspan, 2 mm and
4 mm from the midspan. As was done in preparing the Mode I compact tension
specimen, the crack tip was refined further by a razor blade with diamond abrasive
paste. The final depth of the crack was 4 mm.

Figure 4 shows the three point bend setup and specimen. It is noted that the
poling direction is parallel to the span of the bending setup. The prepared specimen
was placed on the silicon oil tub which was mounted on the MTS machine. The
entire setup including indentor was made of Plexiglas to avoid electric discharging.

Critical loads which caused fracture were measured for each set of specimens for




various electric fields. For each electric field and crack location, three tests were
performed.

Figures 5 and 6 present comparisons of predicted fracture initiation loads
with experimental results for the two off-center cracks. The agreement is fairly
good.
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Fig. 4 Three point bending setup for mixed mode fracture test
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2.2.3 Vickers Indentation Test

Although more accurate, the test using compact tension specimen is slow
and expensive. Recently, we attempted to apply Vickers indentation tests to
determine the fracture toughness of piezoelectric ceramics in the presence of
electric loads. Basically, the fracture toughness is to be determined from the
indentation force and the resulting crack lengths (a and b) as shown in Fig. 7.




Vickers Indenter

Poling Direction

Fig. 7 Dimensions of crack formed by a Vickers indentor.

Using the expression of Mode I mechanical strain energy release rate for an
infinite plate, we derived the mechanical strain energy release rate in terms of the
indentation load and applied electric field as

E EY ‘
GY =271x 10"5(—E]P2a‘3 +3.78 % 10-‘2(7{—) PE?a™ (6)

where E and H are Young’s modulus and Vickers hardness, respectively. This
relation represents the first attempt to determine fracture toughness in piezoelectric
ceramics in the presence of electric fields using Vickers indentation.

Taking the critical strain energy release rates from the indentation test, the
crack lengths under electric fields were predicted for each indentation loading
using Eq. (6) and measured crack lengths. Figures 8 and 9 show the predicted crack
length versus the electric field for 9.8N and 49.0N indentation loads, respectively.
It is seen that the predictions agree with the experimental results very well for
positive electric fields. However, the predictions deviate from the experimental
data significantly for negative electric fields, especially for the case of the larger
indentation load.
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A possible explanation for this deviation is as follows. In calculating the
mechanical strain energy release rate, crack surfaces were modeled as insulated
boundary conditions. Considering the low electric permittivity of air or silicone oil,
this assumption can be justified for the compact tension test since the width of the
machine-notched initial crack was large enough and crack surfaces were always
opened both under positive and negative electric fields. For the Vickers indentation
test, however, due to the plasticity beneath the indentation, there already exists a
contact region right after the indentation. The positive electric field tends to open
the crack. However, the specimen is in contraction under a negative electric field
and the indentation-produced crack surfaces might be still in contact. This would
produce a wedging mechanism that could cause additional crack growth.

Fracture Toughness in Depoled Piezoceramic

Several specimens were depoled by annealing over the Curie temperature to
eliminate the piezoelectric property and residual stresses. With this test, changes in
fracture toughness of the PZT-4 piezoelectric ceramic by the poling process was
also investigated. To depole the as-received specimen, the specimen was placed on
a heating oven under 1000°C for two hours and cooled down in the air. A modified
empirical formula for fracture toughness based on the Vickers indentation test is
obtained as:

1
KIcC = 0.006(%) 2p,~162 %

Figure 10 shows stress intensity factors for unpoled and poled specimens using the
modified equation, Eq. (6). From the figure, it is noted that fracture toughness was
changed by the poling process and exhibits strong anisotropy. On the other hand,
for the depoled specimen, a = b, indicating that fracture toughness is isotropic in
the depoled specimen.
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Fig. 10 Stress intensity factor under different indentation loads or crack lengths
for unpoled and poled PZT-4.

10




2.3 Concluding Remarks

From the results of the present study, the following conclusions have been

obtained.

Stress intensity factors and the total energy release rate are not suitable for
describing the fracture behavior of piezoelectric ceramics.

The mechanical strain energy release rate is a promising fracture criterion for
piezoelectric ceramics.

Positive electrical fields aid crack propagation while negative electrical fields
impede crack propagation. In other words, positive electric fields decrease the
apparent fracture toughness of piezoelectric ceramics while negative electric
fields increase it.

11




3. FATIGUE CRACK GROWTH BEHAVIOR IN PIEZOELECTRIC CERAMICS

Durability of piezoceramic actuators is an important aspect of smart structure
technology. Fatigue failure is caused by crack nucleation and propagation. This part of
the research concerns the mechanism and prediction methodology for fatigue crack
growth in piezoceramics under cyclic mechanical and electrical loads. Two types of
specimens were used for the fatigue study, namely, the compact tension specimen and
cracks produced by Vickers indentation.

3.1 Fatigue Crack Growth Under Combined Mechanical and Electrical Loading
Using Compact Tension Specimen

Compact tension specimens of PZT-4 piezoceramic similar to that shown in
Figs. 1 and 2 were used for the fatigue crack growth study. Two types of loading were
considered. In the first type of loading, cyclic tension-tension mechanical loads were
applied while keeping the electric load constant. The mechanical load was applied using
and MTS machine and the electrical load was applied using a 50 k¥ d.c. power amplifier.
In the second type of loading, the mechanical load was kept constant while a half sine
wave of electrical field was applied to the specimen.

In order to avoid discharging through the air and to ensure an insulated crack
surface boundary condition, the specimen was immersed in a transparent Plexiglas tub
filled with silicon oil. A traveling microscope was used to measure the crack length.

Figures 11 and 12 present the results for the two types of loading, respectively.
For both types of loading, a positive electric field can produce a grater crack growth than
a negative electric field for the same mechanical load. From the results of Figs. 11 and 12
the crack growth rate da/dN can be obtained and plotted versus the range of the
mechanical strain energy release rate AG™ for both loadings in log-log plots as shown in
Fig. 13. It is interesting to note that all theses crack growth curves collapse into a single
curve. This indicates that crack growth in the piezoceramic is controlled by the
mechanical strain energy release rate G", and a fatigue crack growth law similar to the
Paris law can be established.

12
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3.2 Fatigue Crack Growth in Piezoceramics Under Electrical Loads

This part of the research concerns the mechanism and prediction of fatigue crack
growth in piezoelectric materials under the action of cyclic electric loading. In this study,
the precrack is generated by Vickers indentation. On the basis of mechanical energy
release rate, the electric field alone cannot cause crack propagation. However, since the
precrack was formed by Vickers indentation, residual stresses exist after unloading.
Therefore, crack growth may result from interaction of the residual stress and electric
field rather than from the electric field alone. The applied AC electric field with 60 Hz on
PZT-4 piezoceramic specimens was determined by averaging the measured crack length
of a set of indentations after certain cycles. The crack lengths were measured from an
optical microscope.

The results showed that the crack propagates a certain amount under the pure
cyclic electric loading with a range from 1.5 kv/cm to 7.5 kv/cm. During crack growth,
the major crack, which is perpendicular to the poling direction, propagates dominantly. In
order to account for the different contributions from negative and positive electric fields,
the circuit is modified so that a half wave can be generated. Figure 14 shows the
comparison of crack lengths produced by the full wave, the negative and positive half
wave electric fields with peak value of 5 kv/cm. The crack length for the full wave grew
by 14 % while 9 % and 4.5 % for positive and negative fields, respectively. It is noted
that the crack growth under action of the positive cyclic electric field is much greater than
that under the negative electric field.

14




This phenomenon can be explained as follows. During the indentation with
Vickers indentor, a plastic zone is created inside the penny-shaped crack. Tensile residual
stresses exist near the crack tip after indentation. On the other hand, a negative electric
field when coupled with the crack tip tensile residual stress would yield a smaller strain
energy release rate and thus less crack growth. A positive electric field through the
coupling with the tensile residual stresses would produce a significant mechanical strain
energy release rate that would produce fatigue crack growth. Once the residual stress
releases, the crack may stop growing. While the negative electric field is applied, the
plasticity zone keeps in contact and acts as a wedge. The wedge effect causes the crack to
grow further. The wedge effect becomes small while the crack grows. Finally, the crack
growth arrests once the wedge effect disappears.
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Fig. 14 Fatigue crack growth under cyclic electric loading.

3.3 Concluding Remarks

For the same mechanical loading, a positive electric field would produce a faster
crack growth rate than a negative electric field. Nevertheless, combined mechanical and
electrical loading can be represented in terms of a single variable in the mechanical strain
energy release rate G". The experimental result shows that the Paris law can be adopted
for fatigue crack growth in piezoceramics if AGY is used as the controlling parameter.
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4. DEVELOPMENT OF ADAPTIVE SANDWICH STRUCTURES

Piezoceramic actuators in an adaptive structure are either surface-mounted (see
Fig. 15a) or embedded in the host structure. Although effective in actuation, surface-
mounted actuators are susceptible to damage inflicted by contact with surrounding
objects. Furthermore, being placed at the extreme thickness positions of the structure, the
actuator would be subjected to high bending stresses which may prove to be detrimental
to the brittle piezoceramic material. Embedding actuators in composite structures is
possible. However, to accommodate the actuator, the composite material must be cut and
removed, causing significant reduction in stiffness, strength, and durability of the host
structure.
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Fig. 15 Adaptive sandwich beam (a) and
surface-mounted actuation beam (b)

In this study, a sandwich construction for adaptive structures is investigated. The
sandwich consists of stiff facing sheets with a core consisting of partly honeycomb (or
rigid foam) and partly piezoelectric ceramics (see Fig. 15b). The piezoelectric core is
positioned in such a way that an electric field in the thickness direction would generate
the thickness (or transverse) shear deformation of the core (see Fig. 16). The transverse
shear deformation in the core would produce the desired transverse deflection of the
sandwich. This new sandwich construction offers many advantages over conventional

16




constructions. For example, stresses in the piezoelectric core are much lower for
achieving the same deflection of the structure. Figure 17 shows the axial (bending) stress
distributions over the thickness for the two types of beams under a concentrated force
applied at the tip of a cantilever. Figure 18 shows the axial stresses due to electrical

loading.
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Finite element analysis results also indicate that interfacial stresses between the
actuator and the host structure in the sandwich beam are much smaller than those in the
beam with surface-mounted actuators. Consequently, debonding would be less of a
problem in the sandwich beam than in the surface-mounted actuation beam. It is evident
that the induced bending stress in the actuator in the sandwich construction is much
smaller than that in the surface-mounted actuator.

The result of this study indicates that the use of continuous piezoelectric core in
sandwich construction is not necessary. In fact, it is more effective and efficient to use
sparsely spaced piezoelectric core. The spaces between the actuators can be filled with
light rigid foam or honeycomb core, thus minimizing the added weight penalty.

To compare the deflections produced by these two types of beams, cantilevered
beams shown in Fig. 15 are subjected to the same electrical field. The tip deflections of
the beams are plotted in Fig. 19 for various locations (d) of the actuator of size a =1 cm.
It is evident that the tip deflection for the sandwich beam is much larger than that for the
surface-mounted actuation beam.
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Abstract. Closed form solutions for all three modes of fracture for an infinite piezoelectric medium containing a
center crack subjected to a combined mechanical and electrical loading were obtained. The explicit mechanical
and electrical fields near the crack tip were derived. from which the strain energy release rate and the total potential
energy release rate were obtained by using the crack closure integral. The suitability in using the stress intensity
factor. the total energy release rate. or the mechanical strain energy release rate as the fracture criterion was
discussed.

1. Introduction

Due to the intrinsic coupling effect between mechanical and electrical fields, piezoelectric
materials have been widely used as electromechanical devices. Among them, manmade piezo-
electric ceramics possess strong coupling characteristics and are used as actuation devices.
However, piezoelectric ceramics are very brittle and susceptible to fracture during service. To
prevent failure during service, the fracture behavior of these materials must be understood.

“Recently several researchers have performed analyses of piezoelectric materials containin g
a crack. Two crack surface boundary conditions have been considered. One is to consider the
crack surface as an electrically conducting surface and the other is as an insulated one. Since
dielectric permittivity of piezoelectric ceramics is three orders of magnitude higher than air or
vacuum which is considered to be in between crack surfaces, the insulated model is considered
closer to reality.

Parton 1] and McMeeking {2] modeled the problem in which a crack was filled with con-
ducting fluids. Later Parton and Kudriyavtsev [3] obtained solutions for insulated cracks. They
derived stress and electric displacement fields near the crack tip. Using complex displacement
formulation and an insulated crack model, Pak {4] obained a closed form solution for the
antiplane mode III fracture. Sosa and Pak [5] used Williams® eigenfunction expansion method
[6] to investigate the singular nature of the near tip stress and electric fields in piezoelectric
media. They showed square root singularities in both stresses and electric displacements.
Considering a crack in a piezoelectric medium as a limiting case of an elliptical hole, Sosa
(7, 8] investigated stress fields near a crack using complex potential formulation. Suo et al.
[9] studied in-body and interface crack problems of piezoelectric materials using an integral
formalism.

Efforts have been made to establish the fracture criterion for piezoelectric materials. Up to
now, the total potential energy release rate has been proposed as the fracture criterion. Similar
to the path independent I integral of Cherepanov [10], Pak and Herrmann [11] derived the
material momentum tensor which accounts for the total potential energy release rate. Pak
[4] used it to predict mode III fracture. However, he found an unusual result in that the
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total potential energy release rate is always negative in the absence of mechanical loading
and the presence of electrical loading always reduces the total potential energy release rate,

implying that the electric field would impede crack propagation. This contradicts all available
experimental observations [12, 13, 14].

In this study, full field closed form solutions for all three modes of fracture with insulated
crack surfaces were derived. Stroh formalism [15, 16] was employed to analyze general
anisotropic material properties. This approach was used by other researchers [9, 17, 18]. The
solutions were reduced to near tip solutions to investigate the characteristics of stresses induced
by mechanical and electric fields. Since fracture itself is a mechanical process, a new fracture
criterion based on the mechanical strain energy release rate was proposed.

2. Closed form solutions for crack problem

Field equations for piezoelectric material subjected to mechanical and electrical helds can be
written as [19]

Ty = Coykilikl + €15,00. D = €qurg — <40y, (N
o,,=0. D;;=0. 2)
where 0,;. u;. D, and ¢ are stresses, displacements, electric displacements, electric potential,
respectively; c;jki, €i;k. €i; are elastic constants, piezoelectric constants, and dielectric per-
mittivities, respectively; and a comma indicates partial derivative. The electric field, E;, is

related to the electric potential, ¢, as E; = —¢ ;.
Assume that the field variables u; and ¢ are functions of z; and z; only, i.e.,

up = Ak f(2), &= Adf(2), k.= 1,2,3, (3)
where z = z| + pzr,. Applying field variables, (3), to field equations, (1) and (2), we obtain

cijiArf i+ enjAafji =0, euAcfji—¢€iAaf;1=0

Lk=1,2,3, j5l=1.2 4

The above system of four homogeneous equations must be singular in order to yield nontrivial
solutions for Ax (k = 1,2,3) and Ay, ie.,

citkl + (Citkz + Ci2kt)P + cizkap® - €1t + (eri2 + €201)p + €2020° “o )
etk + (e1k2 + €2k)p + e2k2p®  =[e11 + (€12 + €21)p + €227

Solving the above characteristic equation, we obtain eight eigenvalues, p’s, forming four
conjugate pairs. In terms of these eigenvalues, a general expression for the displacements and
electric potential can be written as

Z Amafa ~a + Z Amafa ) m = 17---345 (6)

a=l
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(a) (b) (c)

Fig. 1. Decomposition of problem for a piezoelectric material containing a planar crack for all three modes of
fracture. (a) Original problem. (b) Far field loadings without a crack. (c) Crack surface loading with a crack.

Ml g o | ke k=123 l,....4
V= . = ) v = 1,2, = 1l,...,9
(o} 444‘3, “ )

where z, = x| + poZ2, 24 = 7| + P, > and the bar indicates complex conjugate.
Defining new stress functions, y, and electric displacement function, &, as

gil=—-\u2 Ga2=Vi1. Di=-Kk3. Di=k,;. i=1,2,3, (8)

we can obtain the following equations using (1), (6) and (8).

¢ = Z Liafcx(zo:) + Z Zia.fa(ga)a K= Z l'Vafa(:'-'o:) +Z chfa(fa)v (9)

" Lia = (ki + PaCizk2) Aka + (€12 + Pa€2i2) Adas

. (10)
Wo = (€261 + pa€ak2) Aka — (€21 + Pa€22) Ada.
The above can be expressed symbolically as
¢, = Z 11'[mcxfa(za) +Z meafa(fa)a m=1,...,4, (1nH
i L; ‘
@:{Y}ansz[ } =13 a=l..a 1)
K Wo

Consider an infinite piezoelectric medium containing a center crack of 2 units in length,
see Fig. 1. The body is subjected to arbitrary far field mechanical and electrical loading. This
problem can be considered as the superposition of the two sub-problems shown in Figs. 1(b)
and (c), respectively.

For problem (c) in Fig. 1, consider the semi-infinite regions z; > 0 and z; < 0 separately.
In z; > 0O, the displacements and electric potential which have the form of (6) may be written
by use of complex Fourier transformation as

o0 > e .
v =S A / Fremadp+ Y Ana / F¥emi%a dp, (13)
+ Z:, A p Za: | p
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where the superscript + represents the region ra > 0. The corresponding stress and electric
displacement functions are

(b+ = E ‘[ h 1:‘+ e“’:" dp + E \_[ b ['+ e_‘pfq d (14)
m Ty 0 R Smoy 0 I8 p'
2 a

Similarly, in 15 < 0, we write

x 3 X .
o= Z Ama /0 Fre ' dp + Z Ama 4/(; F e dp. (15)

X - oS R
¢ = Z Ma /(; Foe % dp + Z Moa /0 EZ e dp. (16)

Assume that the faces of the crack are perfectly insulated, the boundary conditions for
the problem are (i) stresses and electric displacements must be continuous outside the crack.
and (i1) the free boundary conditions of the original problem along the crack surface must
be satisfied. Free boundary conditions of crack surfaces include mechanical traction free and
electrically insulated surface conditions such as

o,n, =0 and D;n; =0. (17

For the sub-problem in Fig. 1—(c), boundary conditions are

(i)UE:UE,D;‘:D{ or Qi'l:d):n‘l, |z > 1,22 =0 (18)
and,  uf = w0t =67 or vh=ug
(i) oo = —05(21), D2 = =D3°(z1) or ®p ) = ~Thp, |zl < 1.z2 =0,

where, & = {03 () D3°(z, )}T.i = 1,2, 3 are the solutions for the sub-problem Fig. 1(b)
atr» = 0and 'l‘]l <L
From the boundary condition (i), the following relations are obtained.

F:(P) = ‘Van‘pn(p)» Fa—(p) = ivan‘i'n(p)s (19)

lIlm(p)zz: AfmaF:(p)s Z AImalvanzémnv m,n=1,...,4.

a

Applying the relations of (19) into (13)-(16), the boundary conditions become

/ {Un(p)e™idp — ,(p) e} dp = 0, '|zl| >1, 7,=0, (20)

0

/ {U.(p)e™ dp — U, (p)e** Y pdp = iT,, |z1| <1, z2=0. (1)
0

Equations (20) and (21) form two sets of dual integral equations which are to be solved
to obtain ¥,,. For the case where the remote applied stresses and electric displacements are
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constant, the solutions for ¥, are obtained following Stroh's solutions for elastic materials
[13, 14]. The corresponding  and ¢ are given by

] . h 3 ; . h]
Vmo= 5 2 A dma Nanl(=d = DY = 5]+ i N2 - Y22 5 )T (22)

1 . 3 3 Y - 9 e
$m =3 Do AMma Nanl(z2 = Y2 = 2 ) 4 Mo Vonl(22 = DY2 2 2 1T, (23)

Using relations given by (8) and adding the solution for Fig. 1(b), we obtain the stresses and
electric displacements as

I _ .
g = =5 > {Mia Nanpalzalz = )77 -1
+ '{Ika -\_'an])a[fa(si - 1)1/2 - 1]}Tn- (24)
] 7 - w 3 - _
T2 = > Z {.‘[ka-\’anza(-?i - 1) 1/2 + J[ka-\’an:a(:i - I)I/Z}Tn. (25)

! . s
Dl = _; Z{“[40A\anpa[3a(:; - 1) 12 - l]

+ MiaNanpala(Z3 = 1) = 1]}T,, (26)
1 . AT
D2 =33 {MiaNanzalzd = )72+ MiaNanZa( 2 - 1)7V2)T,,
=4

k=123, n=1,...,4 2N

3. Near tip solutions

The stress and electric fields near the crack tip are of interest; they can be derived from the full
field solutions. Let the origin of the polar coordinates, r and 8, be .ocated at the right crack
tip, see Fig. 2. Then

Za = 1 + 7(sinf + p, cosb). (28)
Take the radial distance r to be small compared to unity, then the full field solutions reduce to

VT 1
R A’I Van n [} k e 11 331
k2 varr © za: ko /cos O + Posing d 2

(29)

/7 |
Dy = R My, [ andn ? .
. V2rr ¢ ; 4 cosz‘H—p(,sinﬂf\Cm "
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-
v

Fig. 2. Coordinate systems.

The square root singularity in r is evident in both stresses and electric displacements. Noting
the reciprocal relationship between M and .V, we obtain along § = 0

01200 =0) = ﬁ U‘fg. 012(0 =0) = ﬁ o3
2rr T V2rr -

(30)
03200 =0) = \/\:—;03’? Dy(8 =0) = {fng“.

Following the conventional definition, the stress and electric displacement intensity factors
are given by

1\'1 = \/Edi_,)g.[\‘" = \/;U'l:g,l\'m = \/7?(7305, and 1\'|v = \/;DZ:O, (31)

‘respectively. These intensity factors have been derived by Suo et al. {7]. It is interesting to
note that along this plane, 6 = 0, the stress and electric fields are not coupled. In other words,
the electric field alone cannot produce mechanical stresses in the crack plane ahead of the
crack tip. Consequently, if the stress intensity factor is used to determine crack instability, the
electric field should have no effect. Such a conclusion would contradict experimental findings
[12,13,14].

To examine the possibility of change of crack propagation direction, the tangential stress,
049, near the crack tip is investigated using the near tip solution. Mode I fracture of a PZT—4
medium is considered. The material constants for PZT—4 piezoelectric ceramic are listed in
the Appendix. It is noted that material axes and analysis axes were denoted as X . X, X3 and
I'|.r2, 3, respectively. In this case, for mode I, X, — X3 is assigned to ry — > coordinate in
analysis. Figure 3 shows the tangential stress variation as a function of # at a constant value
of r for pure electrical or mechanical loading. Figure 4 shows the results for mixed loadings.
It is evident that maximum tangential stress may occur at some angle from the crack plane
under strong electric fields. This implies that crack propagation may deviate from its original
plane even though mode I loadings are applied. This crack skewing mechanism is consistent
with the experimental observation by McHenry and Koepke [12].

4. Mechanical strain energy release rate

Total potential energy release rate that includes mechanical and electrical energies during
crack extension has been derived for use as a fracture criterion for piezoelectric materials
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[4,7,8]. When used as the fracture criterion, this quantity failed to predict the effect of the
electric field on the fracture of piezoelectric materials. In fact, if it assumes that fracture occurs
when the total potential energy release rate reaches the critical value, it shows that the electric
field always impedes crack growth in contradiction to the experimental evidence [12, 14].
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Since fracture is a mechanical process, it may be more suitable to consider the mechanical
strain energy release rate as the fracture criterion. The strain energy release rate can be
calculated by the crack closure integral [20] as

M = lim / aa(riu(é - r)de. (32)
a—=0¢ Sy
where ¢ is the assumed crack extension. Using the general solutions given by (24-27), the
mechanical strain energy release rates for all three modes of fracture can be calculated using
the crack closure integral.
The crack opening displacements, A uy, can be written as

Aup = =24/1 - I% Im(.—lka.\-w)rj. -l < gl (33

Let —r| = £. Near the night crack tip, £ is small and A u; becomes

Aup = =226 Im( Ay, Vo)) T, (34
Using (29), (32), and (34), the strain energy release rate is obtained as

G = —IrT Im( A, N, T, (35)

For comparison, the total energy release rate is also presented. We have
J :/[Hnl —a,-jn,ug,1+D,'E1n,']dF, (36)
r .

-where H = %c,-jkls,,su - %SijEiE]' — eix1sk E; is the electric enthalpy and s;, indicates the
strain tensor; I' is an integration contour beginning at the lower crack surface and ending at
the upper surface, and n is the unit normal vector to the contour. Similar to the J-integral for
elastic materials [21], (36) can be shown to be path independent and equal to the crack closure
integral, i.e.

é
J=G= bll_r.r(l)% /0 {on(z)u(6 — z) + Di(z)¢:(8 — z)} dz, (37)
where G is the total energy release rate.

For convenience, we now use the principal material axes, X, X>, X3, for PZT—4 as the
coordinate system in the crack problem. The loadings for the three modes of fracture are
depicted in Fig. 5. To use the solutions given in the previous section, the coordinates must be
properly interpreted. For PZT—4 piezoelectric ceramics whose material constants are listed in
the Appendix, the mechanical strain energy release rates (G™) and the total energy release
rates ((5) for each mode of fracture are obtained as

G = 1r(1.48 x 10711055 + 2.67 x 10-20 D5°),

Gl = §m(1.10 x 1071103 4 2.59 x 107203 D), G8)

M T

002 o0 oo
g = (11053 + e15053D57)
f 2(644611 + 6%5) 23 372
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e
Mode | Mode 1i Mode {11

Fig. 5. Alignment of principal material axes for each mode of fracture.

= 17(1.80 x 1070 3§" +4.02 x 10720 D5°).
and
Gr=4r[1.48 x 1071035 + 2(2.67 x 10203 DY) - 8.56 x 107 D).

Gy = (110 % 1071y’ +2(2.59 x 1072635 D) - 1.14 x 108D3°). (39)

T 2 -3
(1'[”: e e— [“”qu +2(€ O'xDx)—C Dx]
- - 23 15623 773 3L
2(cass) + €55)

= 17[1.80 x 1071035 + 2(4.02 x 1072053 D5°) - 7.66 x 107 D3’],

respectively.

The difference between the mechanical strain energy release rate and the total energy
release rate is obvious. Note that the electrical energy term in G is always negative. Thus, it
is possible to produce a negative energy release rate in the absence of mechanical loading or
if the mechanical loading is small. On the other hand, the dependence of G on the electric
displacement is linear. Thus, the electric field can add or subtract from the strain energy release
rate depending on the electric loading direction.

In Fig. 6, the strain energy release rates for three different mode I electric loadings,
D3 = —2.0,0.0 and 2.0(x 10~*C/m?), are shown. For the negative electric displacement,
D3 = —2.0(x107*C/m?), the mechanical strain energy release rate becomes negative for
033 < 0.36(MPa). Thus for loading D§° = —2.0(x107*C/m?) and 035 < 0.36(MPa),
the realistic mechanical strain energy release rate should be zero because the crack surfaces
are in contact. A similar argument leads to the conclusion that G¥ = 0 for D = 0 and
035 < 0. In the case D° = 2.0(x107#C/m?), the strain energy release rate becomes
negative in the region —0.36 < o‘j?ws O(MPa). However, crack surfaces are in contact
only for ¢33 < —0.36(MPa). Thus, G should be set equal to zero for applied stress less than
—0.36(MPa).

Figure 7 shows the variations of the strain energy release rate for mode I plotted with
varying electric loading for constant mechanical loadings. Since electric loading alone does
not produce stresses in the § = 0° plane, the strain energy release rate is zero if the remote
applied stress is absent. Due to the closure of crack surfaces, Gf," should be set equal to zero

when it becomes negative.
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Figure 8 presents the result of mode III under three different constant electric loadings.
In this case, the variations of G} i for positive and negative electric loadings with respect
to the applied shear stress, respectively, are identical since crack surfaces can be displaced
in either direction. Although it is not presented here, mode II shows a behavior similar to
mode III. In the mode III case, since the crack surfaces can be displaced in both directions,
the mechanical strain energy release rate can become negative for certain combinations of
mechanical and electrical loadings. Figure 9 presents the results for three different mechanical
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Fig. 9. G (N/m) under a constant mechanical loading o357 (MPa).

loadings, 053 = —-0.4, 0,0, 0.4 (MPa). Similar to the mode I case, the mechanical strain
energy release rate vanishes without applied mechanical loading.

Figure 10 shows the comparison between the mode III total energy release rate (Gy;) and
the mechanical strain energy release rate (Gﬁ{) for varying electric field E5°. The total energy
release rate indicates that the existence of electric fields always retards crack propagation
regardless of the direction of the electric field applied. On the other hand, the strain energy
release rate predicts that crack propagation can either be enhanced or retarded depending on
the direction of the electric field.
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[ Gy ) versus electric field under a constant mechanical loading 57 = 0.4(MPa).

5. Conclusions

Closed form solutions for all three modes of fracture were obtained for infinite piezoelectric
materials containing a plane crack. The stress intensity factors and electric displacement factor
defined in the conventional manner were found to be unsuitable for predicting crack instability

" under combined mechanical and electrical loading. Using the stress intensity factor alone as
the fracture criterion, electrical loading would have no effect on fracture of the material.

Explicit expressions of the total potential energy release rate (including mechanical and
electrical energies) and the mechanical strain energy release rate (including only mechanical
energy) were dertved for the PZT—4 piezoelectric ceramic for all three modes of fracture.
The mechanical strain energy release rate is linearly dependent on the electric displacement
implying that the strain energy release rate may increase or decrease depending on the electric
loading direction. This result agrees qualitatively with the existing experimental observations.
In contrast, the total energy release rate always decreases as the strength of the electric loading
increases either in the positive or negative direction. Thus, the total energy release rate cannot
be used directly as a fracture criterion for piezoelectric materials.

It is noted that analyses performed in this work are based on linear piezoelectricity. Sin-
gular behavior of stresses and the electric field near the crack tip may affect fracture behavior
possibly through dielectric breakdown, local depoling and domain reversal although these
activities are confined in a small region near the crack tip. Thus, the present linear piezo-
electricity solution should be viewed in the same spirit as small scale yielding approximation
adopted in linear elastic fracture mechanics.
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Appendix

Let .3 be parallel to the poling direction. The constitutive relations for PZT—4 piezoelectric
ceramic in contracted notations are given by

gl P'll ci2oen 00 0 | S1
an c2ocnocx 0000 0 $21
T3l _ fennoen e 0000 0 33
Tay - 0 0 0O cyg O 0 RIS
T3 0 0 0 0 ey 0 283
ap LO 0 0 0 0 (epp—ec2)/20 | 2805
(O 0 €3]
0 0 €3 .
0 0 (1; Fll
10 €15 0 £
c;s 0 0 £s
0 0 0]
(s )
D, 0 0 0 0 ¢5 07]™ cn 0 07 (E
Dyp=|0 0 0 e5 0 0 2‘“;33+051,o E
D; €3 €3 €3 0 0 O - 0 0 ¢33 E;
283|
2512 )

where

cit =139 x 10'%N/m?),  ¢p5

7.78 x 10'%N/m?),  ¢13 = 7.43 x 10'°(.V/m?)

ci3 =113 x 10" V/m?).  cys = 2.56 x 10'0(.V/m?)
€3 = —6.98(C'/m?), e33 = 13.84(C'/m?), ers = 13.44(C'/m?)
11 =6.00x 107%(C/Vm). £33 =547 x 107%(C/Vm).
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Fracture Criteria for Piezoelectric Ceramics

School of Aeronautics and Astronautics, Purdue University, West Lafayette. Indiana

Fracture criteria for piezoelectric materials were investi-
gated. Mode I and mixed mode fracture tests were per-
formed on PZT-4 piezoelectric ceramics to verify the
validity of the mechanical strain energy release rate as a
fracture criterion. Experimental results indicated that
crack extension could be aided or impeded by an electric
field, depending on the field direction. Further, the direction
of crack extension was studied. A crack closure method,
together with finite element analysis, was introduced to
calculate the mechanical strain energy release rate. The
maximum mechanical strain energy release rate was used
to predict fracture loads under combined mechanical and
electrical loads. It was found that the mechanical strain
energy release rate criterion is superior to other fracture
criteria and predicts fracture loads fairly accurately.

I. Introduction

IN ADAPTIVE structures, piezoelectric ceramics are used as
actuators, since they possess strong mechanical-electrical
coupling. However. piezoelectric ceramics are very brittle and
susceptible to fracture. Moreover, actuation forces may act as
crack driving forces. The presence of cracks would degenerate
mechanical as well as electrical performances of the actuator.

Mechanical and electrical fields of piezoelectric media con-
taining a crack have been analyzed by several researchers.'"*
However. the fracture behavior of piezoelectric media under
mechanical and electrical loading is still ambiguous. Specifi-
cally. it is not clear whether the electric field impedes or
enhances crack propagation. Efforts have been focused on the
use of the total energy release rate as a fracture criterion. This
criterion indicates that the presence of electric fields always
impedes crack propagation. However, all available experimen-
tal observation indicates otherwise. Park and Sun® proposed a
new fracture criterion based on mechanical strain energy
release rate. Since fracture is a mechanical process, it was
thought that taking only mechanical strain energy released dur-
ing crack extension as the fracture criterion is more logical.

Experimental efforts have been made to observe fracture
behavior under both mechanical and electrical loadings.
McHenry and Koepke’ measured crack propagation velocities
under electric fields. They observed that electric fields increased
crack speed. and crack propagation deviated from its original
direction under a strong electric field. Tobin and Pak* performed
Vickers indentation tests and found that the apparent fracture
toughness (K,.) of the material was reduced or increased,
depending on the direction of the applied electric field.

In this study, possible fracture criteria for piezoelectric
ceramics, namely, the stress intensity factor, the total energy
release rate and the mechanical strain energy release rate, are
presented, and the suitability of each criterion is discussed.
Mode I fracture experiments were conducted to verify the
mechanical strain energy release rate using PZT-4 piezoelectric
ceramic compact tension specimens. The results indicate that
an electric field can either aid or retard crack propagation. A
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crack closure method in conjunction with the finite element
analysis is employed to calculate the mechanical strain energy
release rate. The maximum mechanical strain energy release
rate is used to predict the fracture loads under combined
mechanical and electrical loads. Also. mixed mode fracture
tests using unsymmetric three-point bending were performed.
The direction of initial crack growth was investigated based on
the direction of maximum mechanical strain energy release rate.

1L

Using Stroh formulation.”'" Park and Sun® obtained closed-
form solutions explicitly for all three modes of fracture for an
infinite piezoelectric medium containing a center crack with
electrically insulated surfaces.

From the solution obtained by Park and Sun." the near tip
stresses and electric displacement for Mode I and Mode I are
expressed in polar coordinates originated at the right crack tip
(see Fig. 1) as

Possible Fracture Criteria

— 3
N\ ma \'_ |
O = /,,——'Re __Mur e === N, T,
N 2T « \Jcos 8 + p_ sin 6
k=23 n=123
D, = T pe[Sag l N T, o
= e n_“"‘,—._—__'___.: wndn
Yo2mr 5 Jeos 8+ p,sin 6 -
where T = (o7, o7, D7} represents remote mechanical and

electrical loadings. a is half crack length. p,, are eigenvalues of
a characteristic equation, and M and N are coefficient matrices
with inverse relations to each other.

Using the conventionally defined stress intensity factors and
electric displacement intensity factor, stresses and electric dis-
placement at the crack tip in the crack plane, § = 0° are
given by

o — KII o — K[ D — K[l (7)
. 2nr B S ! V2T -
where
K, = \/;rZ(r:‘} K, = {/mac?, K, = \,ﬁn’_aD{'
EN
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Poli 24
Direction
~_ J
Fig. 1. Infinite piezoelectric medium containing a center crack with

far-field loading.
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Table 1. Material Constants for PZT-4 Piezoelectric Ceramics
Elastic constants (N/m*)
(VII Cl: Cl‘ Cl-l
13.9 x 10" 7.78 x 10* 7.43 x 10" 11.3 % 10" 2.56 x 10"
Piezoelectrie constants «Cim™y Delectric pernuttinaties «C/Vmy
€y O Cs €, €
—6.98 [3.84 13.44 6.00 X 10" S47T X107
It is noted that stresses and electric displacement are uncoupled Mode II:
in this plane. This indicates that the electric loading alone e
cannot produce mechanical stress in the crack plane ahead of GY = lim=z | ou(x)Au(d ~ 1) du, (5h)
the crack tip and vice versa. If the stress intensity factor is used s 28 ) T T

as a fracture criterion, the effect of the electric field cannot be
accounted for. This leads us to conclude that stress intensity
factor is not suitable as a fracture criterion for piezoelectric
materials.

Another fracture criterion for piezoelectric materials is based
on the total energy release rate. The total energy release rate (J/)
is derived in parallel with the path-independent J integral for
elastic materials. It includes mechanical and electrical energies
released as the crack propagates and is given by

J = j[Hn: — o, nit,, + DEn]dl (ij=23 3
.

where H = 1¢,5,5; — 1:8,,EIE/ = ¢,,5,E, is the electric
enthalpy. I is an integration contour around the crack tip. n is
the unit normal vector to the contour, o, s,,. and E, represent
stresses. strains. and electric fields. respectively. and ¢, . ¢,
and €, represent elastic constants, piezoelectric constants, and
dielectric permittivities, respectively. It is noted that the J inte-
gral given by Eq. (3) is also path-independent. Alternatively. J
can be obtained by using the crack closure integral as’

1
J=G=lim§S

B0

j [o,(x)AW,(B — x,)
0

+ D,(x)Ad( — xy)] dx, (i=23 &

where 8 is the assumed crack extension and «, and ¢ are
displacements and electric potential, respectively.

Considering the mechanical process of fracture, Park and
Sun® proposed using the mechanical strain energy release rate
as the fracture criterion for piezoelectric materials. The
mechanical strain energy release rate includes only mechanical
energy released as the crack extends. The mechanical strain
energy release rate is defined by the mechanical part of the
crack closure integral as

Mode I:
l d
GM = lim 7—J 033 ()AL (8 — x.) dx, (Sa)
&) &~ o
4.6 6.9 L 14.0
1 gal
4.6

9.55 “@

Dimension : mm

Fig. 2. Compact tension specimen, PZT-4

Consider an infinite piezoelectric ceramic containing a center
crack and subjected to Mode I remote loadings. As an example.
material properties of PZT-4 piezoelectric ceramic were used.
The poling direction is assumed to be parallel to the v,-axis.
The mechanical strain energy release rate (G") and the total
energy release rate (G,) are obtained as*

T

Gl = 7(1.48 X 10 "o + 2.67 X 10 *o.D;)  (N/m)

T . R
G, = 7[1.48 X 10 "gn + 2267 X 10 “0;.D;)

- 856 X 10"D7]  (N/m) (6)

or

GY =40 12X 10 e + 267 X 10 PoLED  (N/m)
[ 5 \erle 23 - ally N/m

ma N
G =5Q276 X 107" + 1.23 X 10 ey E

— 856 X I0VEY)  (N/m) (7)

The result indicates that the mechanical strain energy release
rate may be increased or decreased. depending on the direction
of electric loading, implying that crack propagation may be
enhanced or retarded. However, the total energy release rate is
always negative in the absence of mechanical loading. More-
over, the presence of a strong electric loading always reduces
the total energy release rate, implying that electric loading
always impedes crack propagation. It is noted that these inter-
pretations of the results are based on linear piezoelectricity and
there may exist factors beyond the scope of linear piezoelectric-
ity that would affect fracture through the singular behavior of
stresses and the electric field near the crack tip such as dielectric
breakdown and local depoling.

III. Experiment

Mode I and mixed mode fracture tests for PZT-4 piezoelec-
tric ceramic were performed. The purpose of these tests was to
verify the validity of the mechanical strain energy release rate

MTS Machine

Fig. 3. Test setup for Mode I fracture test using compact tension
specimens.
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Fig. 4. Fracture loads under various electric fields for compact ten-
sion specimens.

as a fracture criterion for piezoelectric ceramics. Attention was
focused on the effect of electric fields on fracture.

(1) Mode I Fracture

The specimen was commercially supplied PZT-4. It was
obtained as poled with dimensions of 25.4 mm X 19.1 mm X
5.1 mm. Poling was done along the axis of the [9.1 mm dimen-
sion, and electrodes were coated in silver on top and bottom
surfaces. Material properties for PZT-4 are listed in Table I.
The side surfaces of the specimen were polished with 9 pm
grain sized diamond abrasive. Subsequently, compact tension
specimens were made with the dimensions shown in Fig. 2. The
crack was created by cutting with a 0.46 mm thick diamond
wheel perpendicular to the poling direction in a depth of
10.5 mm. To better approximate an ideal crack. the crack tip
was further cut by a sharp razor blade with diamond abrasive,
resulting in a final crack length of 11.5 mm.

MTS Machine

D.C. Power Supplier

Silicon Oil Tub

19.1
17.1

-

5.1

O

Fig. 5. Experimental setup and dimensions of specimen for mixed
mode fracture test.
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Figures 2 and 3 depict the specimen and setup for the experi-
ment, respectively. The procedure of testing was to increase the
tensile load under a certain electric field until fracture occurred.
To generate electric fields. a power supplier which can produce
up to S0 kV in dc was used. Mechanical loading was applied by
the crosshead displacement control of the MTS machine. The
crosshead speed was 0.0013 mmy/s. During initial exploratory
tests. electric discharging between electrodes through the air
was observed when the electric field exceeded 5 kV/em. To
prevent this and to enforce an insulated crack surface houndary
condition. the specimen was immersed in a tub filled with
siticone oil.

Figure 4 shows the fracture initiation loads under different
electric fields obtained from the experiment. It is evident that
the electric field significantly affects the fracture load. More-
over. positive electric fields. which tend to open the crack.
reduce the fracture load. while negative electric fields increase
it.

Using a Vickers diamond indentor. Tobin and Pak* performed
indentation tests on PZT-8 specimens and found that a positive
electric field would reduce the apparent fracture toughness
(K,.) of a crack perpendicular to the poling direction. On the
other hand, a negative field would increase apparent toughness.
Their observation is consistent with the present results.

(2) Mixed Mode Fracture

Most mixed mode fracture experiments were performed
using oblique crack specimens. Due to the limitation of the size
of piezoelectric ceramics, it is difficult to make the oblique
crack specimen an experimental model. The symmetric three-
point bend specimen has been used extensively in obtaining
Mode I plane strain fracture toughness. K. The three-point
bend specimen with an unsymmetrical crack was adopted for
mixed mode fracture.

Specimens were cut to 19.1 mm X 9 mm X 5.1 mm dimen-
sion. and poling direction was placed along the 19.1 mm dimen-
sion. Surfaces of the specimen were polished with 9 pum grain
sized diamond abrasive paste. Cracks were introduced using a
0.46 mm thick diamond wheel cutter at three different loca-
tions. i.e., the midspan, 2 mm, and 4 mm from the midspan. As
was done in preparing the Mode [ compact tension specimen,
the crack tip was refined further by a razor blade with diamond
abrasive paste. The final depth of the crack was 4 mm.

(@)

Fig. 6. Typical fracture paths for the three different crack locations in
the three-point bending test under 5 kV/cm: (a) center crack, (b) 2 mm
off-center, and (c) 4 mm off-center crack.
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Fig. 7. Fracture loads for various crack locations and electric fields
in the unsymmetric three-point bending test.

Figure 5 shows the three-point bend setup and specimen. It is
noted that the poling direction is parallel to the span of the
bending setup. The prepared specimen was placed on the sili-
cone oil tub which was mounted on the MTS machine. The
entire setup including indenter was made of Plexiglas to avoid
electric discharging. Critical loads which caused fracture were
measured for each set of specimens for various electric fields.
For each electric field and crack location. three tests were
performed.

Figure 6 shows typical fractured specimens under the electric
field of 5 kV/cm. Figure 7 presents fracture initiation loads
for various electric fields. Center-cracked specimens produced
Mode [ fracture and exhibited the same fracture behavior as the
compact tension specimens. Specifically, positive electric fields
decreased fracture load, whereas negative electric fields
increased it. The specimens with an off-center crack also exhib-
ited the same trend.

IV. Finite Element Analysis

In the experiments, fracture loads were measured. To deter-
mine the corresponding energy release rate, we resorted to
finite element analysis. Four-node multifield plane elements in
ANSYS'' were used in the analysis. The mechanical strain
energy release rate was calculated using the modified crack
closure method.'*™* The concept of the crack closure integral is
that if a crack extends by a small amount Ag, the energy
released in the process is equal to the work required to close the
crack to its original length.

Figure 8 illustrates the finite element mesh near the crack tip.
Let the internal nodal forces at node (d) contributed jointly by
elements 1 and 2 be denoted by F{" and F\”, and the nodal
displacements at node (b) and (¢) be u{”,u{ and u%’.uf’.
respectively. The work done for crack closure in a mixed mode
problem can be obtained as

1
GM = GiM + G:‘f = _2Aa [F‘;”(u‘_{" _ ll&"') + F(lel(u(zm _ “(:’”)]

()

Similarly, the total energy release rate can be obtained by add-
ing the electrical crack closure energy to the mechanical strain
energy release rate. We have

1
G = G + 5-[0“(6" = $*)] )

where Q' is the nodal charge of elements | and 2 at node (d).

It is obvious from Egs. (8) and (9) that nodal forces, displace-
ments, electric charges, and potentials are needed in the finite
element analysis. However, ANSYS does not provide the nodal
charge, Q, as an output option. For the calculation of nodal
forces, F, and charges, Q, used in Eqs. (8) and (9), the stiffness
matrix for an element was obtained as'®

°'33T

e o 0o
L

Fig. 9. Finite element model for a piezoelectric medium containing a
center crack under both mechanical and electrical loading.

)-8
Kxbu K(hxb d’) Q

where u and ¢ are nodal displacements and potentials. respec-
tively, and

K

un

=fA,ch,,dv K . = JA,{'e"A‘,,dV
1

1
K¢,,=J' TeA,dV K, = jA(’;eA‘de (11)
v v

in which ¢, e, and € denote elastic constants, piezoelectric
constants, and dielectric permittivities, respectively, and

N,
a0 aN,
aN, ax
A=l o Av=| o (12)
ON, 8N, ay
By ox

where N, are interpolation functions.

From the finite element analysis, the nodal displacements,
u, and the electric potentials, ¢, are obtained. Equation (10)
yields the nodal forces and charge for each element from which
the quantities needed in Eqs. (8) and (9) are obtained.

An example finite element analysis was performed to verify
the validity of the modified crack closure method in calculating
the mechanical strain energy release rate for piezoelectric mate-
rials under combined loading. The example considered was a
finite center-cracked piezoelectric medium with both mechani-
cal and electrical loadings for Mode I fracture. The finite ele-
ment mesh, specimen dimensions, and loading conditions are
shown in Fig. 9. It is noted that the lateral dimensions of the
medium are much larger than the crack size. Thus, the near tip
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Fig. 11. Mechanical strain energy release rate for different electric
fields in the compact tension specimen.

solution should be nearly the same as that for the infinite
medium. The mechanical strain energy release rate obtained by
finite element analysis was compared with the analytic solution
for an infinite piezoelectric medium, Eq. (7). The comparison
shown in Fig. 10 indicates that the finite element solution is
quite accurate.

V. Data Analysis and Discussion

(1) Mode I Fracture

The compact tension specimen was analyzed first using the
finite element method. Figure 11 plots the mechanical strain
energy release rate for increasing mechanical loads under dif-
ferent electric fields. For a given load, the mechanical strain
energy release rate is higher for positive electric fields and
lower for negative electric fields. For the negative electric field
case. the mechanical strain energy release rate is negative if the
mechanical load is less than 40 N. From the solution for the
crack surface displacements, it was noted that in this region of
negative strain energy release rate, the crack surfaces penetrate
each other. If the mutual penetration of crack surfaces is pre-
vented by requiring surface contact, then the mechanical strain
energy release rate should become zero rather than assume
negative values.

Using the fracture load for £, = 0 given by Fig. 4, the critical
value of the strain energy release rate, Gl = 2.34 (N/m), was
obtained using the finite element program. Using this critical
value, G}, the fracture loads for other applied electric fields
were calculated and shown in Fig. 12. For comparison, the
fracture loads predicted according to the total energy release

6 -4 -2 0 2 4 6 8 10 12

Applied Electric Field ( kV/cm)

Fig. 12.  Comparison of predictions and experimental fracture loads
in Mode [ fracture tests using compact tension specimens.

Kinked Crack . *

Original Crack

Fig. 13. Kinked crack model for variation of the mechanical strain
energy release rate with crack branching direction.

rate are also included in the figure. The superiority of the
mechanical strain energy release rate over the total energy
release rate criterion is apparent. It is easy to see that the
mechanical strain energy release rate criterion predicts the
effect of the electric field quite accurately.

(2) Mixed Mode Fracture

With the finite element model. the critical loads were pre-
dicted for specimens with cracks at various distances from the
midspan. In the prediction of critical loads for mixed mode
fracture, it is necessary to investigate directions of crack
growth, since the crack would not grow in a self-similar man-
ner. By modeling the kinked crack tip as shown in Fig. 13, the
direction of maximum strain energy release rate (G}.) was
obtained. It is noted that G is composed of Mode I and
Mode 11, i.e., GM = GM + GY. Models with 2 mm and 4 mm
off-center cracks under the electric field of 5 kV/ecm were
chosen as examples.

Figures 14 and 15 show the variations of mechanical energy
release rate versus crack branching angle for 2 mm and 4 mm
off-center cracks, respectively. For the 2 mm off-center crack,
G, occurs at 2.5°, while G} occurs at 7.5°. Similarly, GM
occurs at 5°, while G occurs at 10° for the 4 mm off-center
model. Experimental measurements of the directions of initial
crack growth were 3° & 1° and 5° = 1° for the 2 mm and 4 mm
off-center cracks, respectively. Since the mechanical strain
energy release rate shown in Figs. 14 and 15 is not sensitive to
the crack branching direction, a conclusion cannot be drawn on
the crack growth direction.

We assumed that the crack would propagate along the direc-
tion of GY,. with G¥ = G = 2.34 (N/m) which was obtained
by Mode I compact tension test. Figures 16-18 show compari-
sons of predicted fracture initiation loads with experimental
results for the three unsymmetric three-point bending speci-
mens. They show good agreement. The mechanical strain
energy release rate accounts for electric field effects very well.
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Fig. 18. Comparison of fracture loads for 4 mm off-center crack.

» Positive electrical fields aid crack propagation. while nega-
tive electric fields impede crack propagation. In other words,
positive electric fields decrease the apparent fracture toughness
of piezoelectric ceramics, while negative electric fields
increase it.
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VI. Conclusion

From the results of the present study, the following conclu-
sions have been obtained.

* The mechanical strain energy release rate is a good fracture
criterion for piezoelectric ceramics.

= Stress intensity factors and the total energy release rate are
not suitable for describing the fracture behavior of piezoelec-
tric ceramics.
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Determination of Fracture Toughness of Piezoceramics
Under the Influence of Electric Field Using Vickers Indentation
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ABSTRACT

Vickers indentation is a popular method for determining fracture toughness of brittle materials. Although this method
depends on an empirical formula relating the stress intensity factor (or toughness) to the indentation parameters. it is
simple and economical. In this study, the Vickers indentation method was used to determine the apparent fracture
toughness of PZT-4 piezoceramic under the influence of electric fields. The mechanical strain energy release rate
associated with the crack produced by the Vickers indentor was derived. Using the analytical mechanical strain energy
release rate for an infinite piezoelectric medium with a center crack and far field in-plane mechanical and electrical
loadings, the mechanical strain energy release rate was obtained for Vickers indentation, which involves the out-of-
plane indentation load. The effect of the electric field is properly included. The accuracy of the proposed formula was
verified by experimental results.

Keywords : Piezoelectric ceramic, Crack, Fracture, Strain energy release rate, Vickers indentation

1. INTRODUCTION

Due to the characteristics of strong coupling between mechanical and electric fields, man made
piezoelectric ceramics are used as actuation devices in adaptive structural applications. However, piezoelectric
ceramics are very brittle and susceptible to- fracture during service. Moreover, once a crack exists in a
piezoelectric medium, actuation forces may act as crack driving forces and the presence of cracks would
degenerate mechanical as well as electrical performance of the material and finally cause the failure in structural
integrity. Accordingly, the fracture behavior of these materials must be understood to assure safe usage of these
materials.

Several researchers'® have performed analyses of piezoelectric materials containing a crack. Unlike non-
piezoelectric materials, there are electric field effects on fracture of piezoelectric materials. Due to this
phenomenon, fracture criteria for non-piezoelectric materials such as stress intensity factors, etc., are not directly
applicable. Some effort has been made to establish the fracture criterion for piezoelectric materials. Similar to the
path independent integral of Cherepanov’, the total potential energy release rate was derived and used to account
for the electric field effect on fracture."“*'® However, fracture behavior according to the total potential energy
release rate does not agree with experimental observations.''’® Recently Park and Sun'*'® proposed the
mechanical strain energy release rate as a fracture criterion for piezoelectric materials. The validity of this
criterion was verified by fracture experiment using compact tension and three point bending PZT-4 piezoceramic
specimens.

Compared with conventional fracture toughness testing methods, Vickers indentation technique' ™'
offers a simple and economic alternative. Extensive work was performed to use the crack length which is
measured directly in determining the critical stress intensity factor, K. . Tobin and Pak'? applied the indentation
test to piezoelectric ceramics to observe the effect of electric field on fracture. They measured indentation-induced
cracks under an electric field and calculated stress intensity factors. With that they could show only qualitative
fracture behavior under electric fields.



In this study, quantitative fracture was predicted using Vickers indentation technique. Since an
indentation induced crack is relatively small compared to the specimen size, it can be considered as a crack in an
infinite plate. Accordingly, for the prediction of indentation induced crack. the expression of the mechanical
strain energy release rate for a center cracked infinite plate obtained analytically was tried. The differences of
loading conditions, i.e., in-plane stress applied at far field for analytical solution and out-of-plane indentation
load for indentation tests, was overcome through the stress intensity factor.

2. ANALYSIS
2.1. Fracture Criteria for Piezoelectric Materials
Park and Sun'® obtained closed form solutions explicitly for all three modes of fracture for an infinite
piezoelectric medium containing a center crack with electrically insulated surfaces. From the solution obtained, the near

tip stresses and electric displacement for Mode I and Mode II are expressed at the crack tip in the crack plane, 6=0, as

Ky K, Ky

= N =, D, = 1
SPH N Oy N Y (D

where K, =+nac?, K, =Vrac?, K, =vJnaD;

Both mechanical and electrical loading were imposed parallel to the X,-axis which was the poling direction, and a
center crack was imbedded perpendicular to the poling direction. It is noted that stresses and electric displacement are
uncoupled in this plane. This indicates that the electric loading alone cannot produce mechanical stress in the crack
plane ahead of the crack tip and vice versa. If the stress intensity factor is used as a fracture criterion, the effect of the
electric field cannot be accounted for. On the other hand, experimental results indicate that the apparent fracture
toughness of piezoelectric materials is affected by electric fields. This leads us to conclude that the stress intensity factor
is not suitable as a fracture criterion for piezoelectric materials.

For some time, researchers have attempted to use the total potential energy release rate to account for the effect of
an electric field on toughness without success. In terms of the total potential energy release rate, the electric field (either
positive or negative) always enhances toughness. This contradicts the experimental observation. Recently, the present
authors'*' have proposed the use of the mechanical strain energy release rate to measure the fracture toughness of
piezoelectric ceramics in the presence of electric fields. This concept was proven by fracture experiments using compact
tension specimens and three point bending specimens.

For an infinite PZT-4 piezoelectric ceramic containing a center crack and subjected to Mode I remote loadings,
the mechanical strain energy release rate (G,’) was obtained as'®

G,“=—"2-‘1(L48x10"'o;°3’+2.67x10"0;’30;) (N/m) )
or G,‘“=%(2.12x10'”c§’32+2.67xlO"°c§°,E§°) (N/m) 3)

It is noted that the problem is a plane strain and the poling direction is assumed to be parallel to the x,-axis. The

result indicates that the mechanical strain energy release rate is increased or decreased depending on the direction of
electric loading, implying that crack propagation may be enhanced or retarded.



2.2. Vickers Indentation

For the Vickers indentation test, since the indentation induced crack is small compared to the dimension
of specimen, an attempt was made to relate Vickers indentation with analytic solutions for center cracked infinite
plate with far field loadings.

For isotropic. homogeneous materials, explicit equations for the radial crack evolution by a sharp
indenter have been empirically formulated by many researchers'’'®. For a sufficiently well defined crack. i.e..
a >> D, where a and D are, respectively, measured crack length and one half diagonal length of the indentation
pyramid, the stress intensity factor (K) can be expresszd in terms of material constants, indentation load and
indentation induced crack length such as'’

3 b < Psin(a/2)

) EY_ -
K=0016 | — [ Pa? | b (+)

where P is the applied indentation load in Newton and £ and H are expressed in N/ m* and represent Young's
modulus and Vickers hardness, respectively, O is the apex angle of the Vickers diamond indenter and is
normally 136°.

From the stress intensity factor obtained using Eq. (4), the mechanical strain energy release rate for
piezoelectric materials without electric field can be obtained via the relationship of the stress intensity factor and
the strain energy release rate for homogeneous, non-piezoelectric materials. However, to account for the electric
field effects on fracture of piezoelectric materials, it is needed to use the mechanical strain energy release rate
criterion as a fracture criterion instead of using the stress intensity factor alone.

It is attempted to relate the stress intensity factor, which is composed of the indentation load and the
measured indentation produced crack length on the indentation surface, to the mechanical strain energy release
rate for piezoelectric materials, Eq. (3). The expression of mechanical strain energy release rate for center
cracked infinite plate with far field loadings, Eq. (3), cannot be directly related to the case of Vickers indentation

test since the former deals with in-plane far field mechanical loading, G7,, whereas the latter deals with out-of-

plane indentation load, P. Hence, it is necessary to relate the indentation load indirectly with the mechanical
strain energy release rate.

Following the conventional definition, define stress intensity factor, K,, as
K, = Jynao3, (5)

Equation (3) can be written in terms of the stress intensity factor as

1
Gy =5 (212x10™K] +267x 107°VraESK,) (6)

Substituting Eq. (4) into Eq. (6), the mechanical strain energy release rate in terms of the indentation load and
electric field applied can be obtained as

i
G, = 271x 10“5(%}%-’ +378x 10"{%}2 PE?a™ ()

Using this equation, the mechanical strain energy release rate can easily be obtained by measuring crack (a) and a
half diagonal (D) after indentation.



3. EXPERIMENTAL PROCEDURE

PZT-4 piezoelectric ceramics were used for test materials. Material properties are listed in Table 1. As
received materials were 508 x 191x 51 (mm) plate and the poling was done along the axis of 19.1(snm) dimension.
They were cut in 20 x 5x 51 (mm) dimension holding 5 mm in poling direction. Since the crack size of indentation
is small, it is particularly important to polish the indenting surface. Specimens were polished in several steps.
Starting from the 600 grit silicon carbide polishing wheel. specimens went through finer grit sized wheels and
finished with a 0.5 om grain sized Alumina polishing pad. It is noted that all the cutting and polishing processes
were done in water.

Silver paint was used as electrodes which were applied on the surfaces perpendicular to the poling axis.
Electric wires were soldered to the electrodes. Soldering was done for 5 seconds with 150°C solder to avoid local
depolarization by exceeding the Curie temperature.

Elastic Constants (N /m’)
¢, =139x10° | ¢, =778x10" , ¢,=743x10" | ¢,,=113x10° , ¢, =256x10"

Piezoelectric Constants (C/mz) Dielectric Permmittivities (C/ Vm)
e, =698 , e,=1384 , ¢ =1344 £,=600x10" , ¢,=547x10"
Density (kg/m’) : 755x10° Curie Temperature : 300°C

Static Tensile Strength (MPa) : 758

Table 1. Material properties of PZT-4 piezoelectric ceramics

A silicon oil tub was mounted on a typical Vickers indentation facility and tests were performed in the silicon oil
tub to prevent electric discharging through the air. Figure 1 shows the experimental setup. To generate electric
fields, a power supplier which can produce up to 50kV in D.C. was used. The peak indentation load was applied
via a dashpot mounted for 10 seconds, then, unloaded rapidly in 1 second under a certain electric field. Due to the
limitation of facility, the minimum indentation load used was 4.45N.

Tests were conducted in various electric fields both positive and negative to investigate electric field effect
on crack growth. For each level of electric field and indentation load, 25 to 30 indentations were performed, and
crack lengths parallel and perpendicular to the poling were measured. Crack lengths were measured with the
calibrated eyepiece mounted on the indentor. Figure 2 shows dimensions of indentation-induced cracks.

There are several factors to consider in obtaining reliable data from the indentation test. The ambient
condition of the indentation test is one of the significant factors'’. Specifically, the indentation performed in
silicon oil produced shorter cracks than the one performed in the air. It is thought that moisture in the air and
friction between the contact surfaces may affect crack growth. Another factor is the delayed time for crack length
measurement after completion of indentation. It has been reported that post-indentation slow crack growth could
occur'’. In this study, the crack length was measured immediately after indentation.



Vickers Indenter

Vickers Indenter

o R
- L/ T Poling Direction
/ Tl - 2
/ /?J 2 = =% N
/ ’ // /D? i’ower Supplier N
— |
- L_Zﬁ |
Specimen oF >
Fig. 1. Experimental setup for indentation tests. Fig. 2. Dimensions of crack formed by Vickers indentor.

4. RESULTS AND DISCUSSION

Figure 3 shows a typical indentation shape for PZT-4 piezoelectric ceramic. It is noted that there is
significant anisotropy in the crack pattern; i.e., crack growth perpendicular to the poling direction is significantly
greater than the one parallel to the poling direction. This anisotropic material property was induced during the

poling process. As shown in the figure, a well developed half penny-shaped crack was formed beneath the
indentation surface.

Fig. 3. Typical indentation induced crack (a) indentation surface, (b) beneath the surface.

Indentation tests without electric field were performed both in air and in silicon oil. Figure 4 shows the
resulted half diagonal length of indentation (D), and crack lengths transverse to the poling (a) and parallel to the
poling (b).The results indicate that cracks produced in the air are longer than cracks produced in oil. To assess
the effect of the electric field, data obtained from tests performed in oil were used. The relation between
indentation load(P) and a half diagonal length(D) was plotted in Fig. 5. Recalling Eq. (4), the linear relation of
these parameters in logarithm scale with a slope of 1/2 means it has a constant Vickers hardness (H) regardless of
indentation load, i.e., H=1.57(GPa).



Tables 2 and 3 list variations of the crack length along with different electric fields for 4.45N and 22.24N
indentation loads, respectively. Evidently, crack growth perpendicular to the poling direction is affected by the
electric field whereas the crack growth parallel to the poling direction is not since the electric field near the crack
tip is not disturbed by the crack parallel to the poling. Due to the anisotropy induced by the poling process. the
electric effect is maximized in the plane perpendicular to the poling direction®'. This study focuses on the crack
perpendicular to the poling direction.
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a : perpendicular to poling ; b : parallel to poling
D : a half diagonal of indentation.
Fig. 4. Indentation crack length in air and oil at 4.45 N load.

Indentation Load, P (N)

Fig. 5. A half diagonal length(D) under vérious
indentation load in log-log scale.

e P=4.45N
E;(kV/ cm) a (yom) b (wm) D (um)
-7.5 103.09+1.77 68.23+2.19 35.68+0.83
-5.0 107.08+3.78 69.37+3.01 36.03+0.74
0.0 109.08+1.97 69.96+2 .83 36.46+0.75
5.0 116.59+2.69 68.12+3.33 35.85+0.69
15125031298 69531222 3550080

Table 2. Indentation crack length under various electric fields with 4.45N indentation load.

LT R TP -~ ven P=22'24N
E; (kV | cm) a (um) b (um) D (yam)
-5.0 315.94+8.97 175.79+8.24 82.13+£2.25
-2.5 314.65+9.04 172.40+7.75 83.17+1.44
0.0 301.71+£4.39 168.03+5.65 80.79+1.41
2.5 320.34+9.55 167.49+7.65 78.13+1.46
20 349124929 182214748 82.58+264

Table 3. Indentation crack length under various electric fields with 22.24N indentation load.
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e e DT
0.0 66.14£6.98 263799380 113.57£1.59

Table 4. Indentation crack length with 44.48N indentation load.

For the 4 45N indentation load, see Table 2. a positive electric field increased crack growth, implying
reduced apparent fracture toughness, and a negative electric field decreased crack growth. These phenomena
agree qualitatively with the observations of fracture in the compact tension test. Using PZT-8 piezoelectric
ceramic specimens, Tobin and Pak'’ performed Vickers indentation tests and observed a behavior similar to the
present results. For the 22.24N load case, see Table 3, the trend was similar to the 4.45N load case for positive
electric fields. However, the inverting crack growth under negative electric fields is inconsistent with the 4 45N
load case.

From Eq. (4) and the results of the indentation test given by Tables 2 and 3, it is concluded that the
hardness, /, is not affected by the electric field and the indentation load since the diagonal length, 2D, of the
indentation pyramid remains constant for electric fields. Using Eq. (7) and the measured crack lengths,
a =109.08(wn), a=30171(wn), and a = 46614(wn) in the absence of electric field for P=4 45N, 22.24N and
44 48N, respectively, the critical strain energy release rates are obtained as

Gy =218(N/m) for P=4.45N
G =25¥N/m) for P=22.24N (8)
G =27WN/m) for P=44 48N

These results exhibit about -7, 7, 16% difference compared to the value G“C‘ =2.34(N / m) obtained from the

compact tension tests by Park and Sun'®. It is thought that internal stresses induced by the poling and polishing
process might have caused the measured fracture toughness to be dependent on the indentation load. Using the
equilibrium equations, a formula was proposed'® to account for the effect of internal stresses as

KC=K;’C+2 alno, )

where o, is the normal internal stress parallel to the poling direction, and K ,°C is the intrinsic fracture toughness.
Using this relation, the internal stress can be obtained from the slope of X  Versus Ja.F igure 6 shows the linear
relation between stress intensity factor, K,. , and a square root of crack length, Ja. Asa result, we obtain
o, = 415(MPa). It is worth noting that o, includes residual stresses from the machining or manufacturing and

intrinsic internal stresses from the poling procedure. Only the portion of machining and manufacturing induced
residual stresses can be removed by a proper annealing process.

Taking the critical strain energy release rates from the indentation test given by Eq. (8), the crack
lengths under electric fields were predicted for each indentation loading using Eq. (7) and measured crack
lengths. Figures 7 and 8 show the predicted crack length versus the electric field for 4.45N and 22.24N
indentation loads, respectively. It is seen that the predictions agree with the experimental results very well for
positive electric fields. However, the predictions deviate from the experimental data significantly for negative
electric fields, especially for the case of the larger indentation load.
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A possible explanation for this deviation is as follows. In calculating the mechanical strain energy release rate,
crack surfaces were modeled as insulated boundary conditions. Considering the low electric permmittivity of air
or silicon oil, this assumption can be justified for the compact tension test performed by present authors'® since

@® Test
— Prediction
120
110 E
100 i
o0 bl 4 11
-8 -6 -4 -2 0 2 4 6 8
Electric Field (kV/cm)
|



the width of the machine notched initial crack was large enough and crack surfaces were always opened both
under positive and negative electric fields. For the Vickers indentation test under positive electric fields, both the
indentation load and electric field tend to open the crack. However, the specimen is in contraction under a
negative electric field and the indentation-produced crack surfaces might be in contact. Cao and Evans
suggested a wedging mechanism for the contact in the indentation-induced crack that may produce additional
crack growth.
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Abstract. A new adaptive sandwich structure is constructed using the shear mode
of piezoelectric materials. A comparative study of the sandwich structure and the
corresponding surface-mounted actuation structure is performed using
finite-element analysis. The effects of actuator length and location on actuation
performance of the structures are studied. The stress distributions under
mechanical and electrical loads are investigated for both the sandwich beam and
the surface-mounted actuation beam. It is shown that the stress level within the
actuators is more severe for the surface-mounted actuation beam than for the
sandwich. Also, the interface-stress distribution between actuator and host
structure is analysed. It is shown that sandwich construction offers many
advantages over conventional surface-mounted actuation constructions.

1. Introduction

An increasing number of practical applications for piezo-
electric actuators have been proposed and demonstrated in
recent years [1,2]. They are finding application in ultrason-
ics, shape control, active vibration control and other areas.
To meet the demands of engineering practice, many ana-
lytical models [3,4] have been proposed to describe and
predict the interaction between piezoelectric actuators and
host structures.

Piezoelectric actuators in an adaptive structure are
either surface-mounted or embedded in the host structure.
Surface-mounted actuators are susceptible to damage
inflicted by contact with foreign objects. Furthermore,
placed at the extreme thickness positions of the structure,
the actuator would be subjected to high bending stresses
which may prove detrimental to the brittle piezoceramic
material. Embedding actuators in composite structures
is possible. However, to accommodate the actuator,
the composite material must be cut or removed, causing
possible reduction in stiffness, strength and durability of
the host structure. Moreover, to produce deflection in
beams, plates or shells using surface-mounted actuators, the
actuator must induce bending strains in the structure. Since
these structures are intended for taking bending loads, they
are usually made of high-modulus materials. It is obvious
that to produce bending strains, and thus deflections, large
actuation forces are required. In view of the foregoing,
efficient actuation must be realized in a deformation mode
that does not require significant bending strains in the host
structure.

Sandwich structures consisting of stiff facing sheets
and a relatively soft lightweight core such as honeycomb
or rigid foam are highly efficient in bending. Deflection
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Figure 1. Schematic diagram of the adaptive sandwich
beam.

of a sandwich structure is contributed by bending and
transverse shear deformations. Due to the lower stiffness
of the core, it would be easier to actuate the transverse
shear deformation mode to produce the deflection of the
sandwich structure. This characteristic leads us to the
idea of a new adaptive structure. The proposed adaptive
sandwich structure consists of stiff facing sheets with a
piezoelectric core as shown in figure 1. The piezoelectric
core is positioned in such a way that an electric field in
the thickness direction would generate the thickness (or
transverse) shear deformation of the core. The transverse
shear deformation in the core would give rise to the desired
transverse deflection of the sandwich. This new sandwich
construction offers many advantages over conventional
surface-mounted constructions. For example, stresses in
the piezoelectric core are much lower for achieving the
same deflection of the structure. Moreover, the sandwich
offers much better structural bending stiffness than the
conventional designs.

In order to demonstrate the effectiveness of the new
adaptive sandwich structure, the corresponding surface-



Figure 2. Shear mode of the piezoelectric core.

mounted actuation structure 1s used as a reference
throughout the study. Unlike the sandwich. the poling
direction of the surface-mounted actuator i1s in the Z
direction. The applied electric field is also parallel to
the : direction. A sandwich structure with a small
piezoelectric patch and its surface-mounted counterpart are
studied using finite-element analysis.  Specifically, the
effects of piezoelectric actuator location, actuator length,
and stress distribution within the actuator under mechanical
and electrical loads are investigated.

2. Adaptive sandwich structure

The underlying principle of sandwich construction can be
itlustrated as follows. In a sandwich construction (see
figure 1), the top and bottom layers are stiff facing sheets,
and the central layer is a piezoelectric core in which the
poling direction of the piezoelectric material is arranged
along the x direction. When an electric field is applied
along the 7 direction, the piezoelectric core will produce
a pure shear deformation which is the driving force for
the transverse deflection of the sandwich construction. The
shear deformation of the core is depicted in figure 2.

Due to the high density and the brittleness of
piezoceramics, it is impractical to cover the entire structure
with piezoelectric layers. In practice, small patches are
used. In this study, the core of the sandwich structure is
assumed to consist of a small amount of piezoceramic, and
the rest of rigid foam or honeycomb.

The schematic diagram of the sandwich is shown in
figure 3(a). Most of the core is rigid foam material,
and only a small portion of the core is occupied by the
piezoelectric material. In order to verify the effectiveness of
the sandwich structure, its actuation behavior is compared
with the corresponding surface-mounted actuation beam,
as shown in figure 3(b). The total thickness of the two
piezoelectric patches in the surface-mounted beam is equal
to the thickness of the piezoelectric core in the sandwich
beam, and the beam thickness of the surface-mounted case
is equal to the sum of thicknesses of the top and bottom
sheets of the sandwich beam.

Thickness-shear mode in adaptive sandwich structures
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Figure 3. Adaptive sandwich beam and surface-mounted
actuation beam.
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3. Electric-field-induced deflection

The geometries of the sandwich beam and the surface-
mounted actuation beam are shown in figure 3. Both
structures are fixed at the end x = 0. and free at x = L.
Static voltages are applied at the top and bottom surfaces
of the piezoelectric actuators to produce actuation forces.
The geometrical parameters of both structures are assumed
tobe L =10cm, h = 1.6cmands =0.1 cm. The voltage
applied on the piezoelectric core in the sandwich beam is
Vi = 20 V. and the voltage applied on the surface-mounted
actuators is V, = 10 V. Thus, the electric field intensities
in the actuators for both structures are identical.

The non-piezoelectric layers of both structures are
assumed to be aluminium, and the actuators are PZTSH
piezoceramics. The mechanical properties of the two
materials are listed in table 1. The rigid foam has a density
of 32 kg m™*, a Young’s modulus of 35.3 MPa, and a shear
modulus of 12.76 MPa.

The finite-element analysis is performed using the
ANSYS code. Four-node linear plane-strain coupled
elements are used for the piezoelectric actuator; and four-
node linear plane-strain structural elements are used for
the remaining part of the structure. To begin with, the
length of the piezoelectric actuators is chosen to be a fixed
length @ = I cm. The effect of actuator location (d) on the
transverse displacement at the right tip is studied first. For
the sandwich beam, the model consists of 16 x 100 elements
for the two covering sheets, 4 x 90 for the foam material,
and 4 x 10 for the actuator. For the surface-mounted beam,
the model consists of 16 x 100 elements for the beam and
2 x 10 for each actuator. The transverse displacements at
the right tip corresponding to different actuator locations
are shown in figure 4. It is clear from figure 4 that the
optimum location of the actuator for the sandwich beam is
at 15% of the beam length from the fixed end, and is at the
fixed end for the surface-mounted actuation beam. It is also
shown that for actuator length a = 1 cm, the maximum tip
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Table 1. Mechanical properties for computer simulation.
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Figure 4. Effect of actuator location on tip deflection.

displacement for the sandwich structure is much larger than
that for the surface-mounted beam.

The effect of actuator length on the actuation
performance of the two structures is investigated. The
central location of the actuators for both beams is fixed
at d = 1.5 cm. The transverse displacements at the free
tip for different actuator lengths are shown in figure 5. It
is seen that the tip displacement increases with increasing
length of the actuators for the surface-mounted beam, while
the tip displacement levels off with increasing actuator
length for the sandwich structure. This result indicates
that the sandwich structure is efficient with relatively small
actuators. For longer actuators (> 1 c¢m) the induced tip
displacement is larger for the surface-mounted beam than
that for the sandwich structure.

4. Stress distribution

Very fine meshes are required for an accurate analysis of
the stress field. In order to avoid excess computation time,
the <«mensions of the two beams are altered to L = 2 cm,
t =0.1 cm and A = 0.4 cm. The length of the piezoelectric
actuator is assumed to be a = 1 cm. The central location
of the actuator is placed at 4 = 1 cm from the fixed end
(x = 0). Figure 6 shows the typical finite-element meshes.

" 4.1. Stress distributions due to mechanical loading

The stress distributions along the thickness under
mechanical loading for the two structures are analysed. The
piezoelectric actuators are open-circuited. A concentrated
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Figure 6. Finite-element models for stress calculations.

transverse load P = 100 N is applied at the free eni
of the beam. The axial (bending)-stress and shear-stress
distributions at x = 1 cm for the two structures are shown
in figures 7 and 8, respectively. All the stresses are taken
from the Gauss points. As seen from figure 7, the overall
axial-stress distributions for both structures are similar.
However, the stress levels within the actuators for the two
structures are very different due to their different locations
along the thickness directions. For the sandwich structure,
the actuator sustains the lowest bending stress level within
the structure, because the piezoelectric core is located near
the neutral plane of the beam. For the surface-mounted
actuation beam, the piezoelectric actuators bear the largest
bending stress level in the structure, since the actuators
are located at the furthest locations from the neutral plane.
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Figure 8. Shear stress distribution through the thickness at
d =1 cm under mechanical loading.

From figure 8, the shear-stress level within the actuator for
the sandwich structure is larger than that for the surface-
mounted actuation beam. However, the overall shear-stress
level is much lower than the overall bending-stress level
for both structures. In general, for slender beams, the
transverse shear stress is small compared with the bending
stress. Therefore, it is concluded that the stress level within
the actuators is much more severe for the surface-mounted
actuation beam than for the sandwich structure.

4.2. Stress distributions due to electrical loading

To study the stress distributions under electrical loading, no
mechanical loads are applied. However, a static voltage of
Vi = 20 V is applied at the top and bottom surfaces of
the piezoelectric core for the sandwich case, and a voltage
of V, = 10 V is applied at each of the actuators for the
surface-mounted actuation beam.

The axial stress distributions through the thickness at
location d = 1 cm for the two beams are shown in figure 9.

o

o

Axial Stress, MPa

Thickness, cm

Figure 9. Axial stress distribution through the thickness at
d =1 cm under electrical loading.
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Figure 10. Interface-shear-stress distribution along the
length of the actuator.

It is evident that the level of axial stress in the surface-
mounted actuators is very high, and is very small in the
piezoelectric core of the sandwich beam. The shear stresses
for both structures are negligible at this location.

4.3. Interface stresses due to electrical loading

Of interest also are the interface stresses between the
actuator and the host structure, since the actuation force
is transmitted by the interface. Electrical loading alone is
considered. Figures 10 and 11 show the distributions of the
interface shear stress and normal stress, respectively. Stress
concentrations near the ends of the actuator are evident.
However, for the sandwich beam, the stress concentration
occurs only at the left end of the actuator. This is a result
of the fact that the left end of the sandwich beam is fixed
and the load transfer from the actuator to the face sheets
takes place at the left end of the actuator. Moreover,
interface stresses in the sandwich beam are much lower
and, consequently, debonding is less likely.
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5. Discussion and conclusion

According to the results shown in figure 5, it is clear
that the present adaptive sandwich structure and the
surface-mounted actuation structure have different actuation
characteristics. For short actuators with large thickness
ratios (ratios of the total thickness of the host structure to the
total thickness of the actuators), the actuation performance
of the sandwich beam is superior to that of the surface-
mounted actuation.structure. However, with the length
of actuators increased or the thickness ratio reduced, the
induced tip deflection of the surface-mounted actuation
structure will exceed that of the sandwich beam. As shown
in figure 5, the tip deflection for the sandwich beam reaches
a saturated value, and cannot be significantly increased by
increasing the actuator length. For the surface-mounted
case, however, the tip deflection increases with increasing
the actuator length, thus providing a greater actuation
capability.

From engineering practice, the two actuation schemes
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may be suitable for different applications. For vibration
control. the sandwich beam is more suitable for the
high-frequency. small-amplitude case. The surtace-
mounted actuation structure may be used for the low-
frequency. large-amplitude case. Although the actuation
performance for the surface-mounted case increases with
increasing the actuator length, the structure will suffer
significant weight penalties due to the high density of
piezoceramics. Furthermore, the additional mass may alter
the dynamic behavior of the host structure. From the weight
consideration, the sandwich beam is more efficient than the
surface-mounted actuation structure.

The greatest advantage provided by the adaptive
sandwich beam is its lower stresses in the actuator and along
the interface between the actuator and the host structure.
Since piezoceramics are very brittle, high stresses are
detrimental to the structural integrity of the actuator. Long-
term usage of the actuator can be ensured if stresses in the
actuator are low. Low interface stresses would minimize
the likelihood of debonding of the actuator from the host
structure.
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ABSTRACT

A new adaptive sandwich structure is constructed using the shear mode of piezo-
electric materials. Governing equations for the proposed beam and its surface-mounted
counterpart are derived based on the variational principle. Static solutions of a can-
tilever sandwich beam and its corresponding surface-mounted beam are obtained based
on the derived general formulations. The theoretical formulations are verified by finite
element analysis. Furthermore, stress distributions of the two types of adaptive beams
are also theoretically investigated. It is shown that sandwich construction offers many

advantages over conventional actuation structure.
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1 INTRODUCTION

An increasing number of applications of piezoelectric actuators have been proposed
and demonstrated in recent years.!? Many analytical models have been proposed to
describe and predict the interactions between piezoelectric actuators and host struc-
tures. From the force equilibrium consideration, Crawley and deLuis' developed a
uniform strain model for a beam with piezoelectric actuators bonded on the surface
or embedded in it. The model also incorporated shear lag effects of the adhesive
layer between the piezoelectric actuator and the beam. Later, Crawley and Ander-
son® proposed a Bernoulli-Euler beam model based on the assumption that the entire
cross-section of both host structure and actuators undergoes consistent Bernoulli-Euler
strains. By comparing the two models, it was shown that the uniform-strain model
can accurately predict extension but not bending and that the Bernoulli-Euler model
can accurately predict both. Lee* treated induced strain as equivalent thermal effects
and preseﬂted a model based on classical laminate theory. Recently, Leibowitz and
Vinson® proposed a similar but more general model which may include elastic layers,

soft core layers or piezoelectric layers using Hamilton’s principle.

Piezoelectric actuators in an adaptive structure are either surface-bonded or em-
bedded in the host structure. Although effective in actuation, surface-bonded actu-
ators are susceptible to damage inflicted by contact with surrounding objects. Fur-
thermore, being placed at extreme thickness positions of the structure, the actuator
would be subjected to high bending stresses which may prove to be detrimental to
the brittle piezoceramic material. Embedding actuators in composite structures is
possible. However, to accommodate the actuator, the composite material must be cut

and removed, causing possible reduction in stiffness, strength, and durability of the

host structure.



Recently, Sun and Zhang® proposed an adaptive sandwich structure consisting of
stiff facing sheets and a piezoelectric core. The piezoelectric core is positioned in such
a way that an electric field in the thickness direction would generate the thickness (or
transverse) shear deformation of the core. The transverse shear deformation in the core
would give rise to the desired transverse deflection of the sandwich. This new sandwich
construction offers many advantages over conventional surface-mounted constructions.
For example, stresses in the piezoelectric core are much lower for achieving the same
deflection of the structure. Moreover, the sandwich offers much better structural

bending stiffness than do conventional designs.

In order to demonstrate the effectiveness of the new adaptive sandwich structure,
the corresponding surface-mounted actuation structure is used as a reference through-
out this study. Formulations of the sandwich structure with a piezoelectric layer and
its surface-mounted counterpart are derived using variational principles. The stress
distributions of two structures are obtained using these equations. These formulations

are verified by finite element analysis.

2 PRELIMINARY CONSIDERATIONS

For piezoelectric ceramics (with 6mm symmetry), the materials are transversely
isotropic. The constitutive relation can be represented in terms of the reduced tensor

notation with respect to 1-2-3 axes of piezoelectric material:
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where o;, ¢;, D; and F; are the components of the reduced stress tensor, reduced
strain tensor, electric displacement vector and the electric field vector, respectively.
The coefficients cg are the elastic constants measured at constant electric field. The
components e,; denote piezoelectric constants. The coefficients €7 represent the com-
ponents of the dielectric permittivity tensor measured at constant strain. In the above
equation, the 3-direction is always the poling direction, and the 1-2 plane is an isotropic

plane.

For simplicity in notation, the superscripts in the above equation will be henceforth

omitted. The electric field-electric potential relations are given by

= —¢,k ) (2)

where 1 is the electric potential function.

Hamilton’s principle for variations of the independent kinematic variables at any

time interval [to,¢;] can be written as’

5 Ldt+ 5Wdt_0 (3)
- to

where L is the Lagrangian for a system, and §W denotes the virtual work done by the

external forces.



Let a piezoelectric body with surface S and volume V be subjected to a prescribed

surface traction t; and surface charge per unit area 7. The tota] virtual work §W is
SW = /(zk Suy — 7 8v)dS | (4)
s

where ¢ du, represents the virtual work per unit area done by the prescribed surface
traction in a small virtual displacement of the surface; 7 éy denotes the electrical
analog of the virtual work per unit area done by the prescribed surface charge 7 in a

small variation 8% of the electrical potential 1.

The Lagrangian L for the piezoelectric body is defined by’

1 ..
L= /;/ [§puj uj; — H(EH, Ek)] % y (5)

where u; is the time derivative of the displacement u;, H(ex, Ex) is the electrical

enthalpy which is an energy quantity similar to strain energy.

Erom the thermodynamic argument, it is shown that electrical enthalpy is a func-
tion of only the infinitesimal strain-tensor components ¢; and the electrical-field in-
tensity Er. The simplest form of electrical enthalpy which is compatible with thermo-
dynamics can be constructed for linear theory as

1 1
H = 5 Cijki €ij Ekl — Eijk E,’ Eik — 5 €ij E,' Ej . (6)

Substituting the constitutive equations of the piezoelectric materials into the above
equation, the electrical enthalpy can be simplified as

1 1 -
H=§0','J'€¢‘J'—EE.'D.'. (7)

Combining Eqns. (3), (4),(5) and (7), one may arrange the variational principle

for the piezoelectric media as follows
he 1oL 1 1 h
5/ / [—pdju]' — - 0ij€5+ = E; D,‘]dth +/ /(tkéuk——ﬁ&b)det =0. (8)
to JV 2 2 2 to JS

The aboye equation will be used directly in our formulation.



3 FORMULATIONS OF A PIEZOELECTRIC SANDWICH BEAM
AND A SURFACE-MOUNTED ACTUATION BEAM

3.1 Formulation of a Piezoelectric Sandwich Beam

The underlying principle of sandwich construction can be illustrated as follows. In
a sandwich construction (see Fig. 1), the top and bottom layers are stiff facing sheets,
and the central layer is a piezoelectric core in which the poling direction of the piezo-
electric material is arranged along the x-direction. When an electric field is applied
along the z-direction, the piezoelectric core will produce a pure shear deformation
which is the driving force for the transverse deflection of the sandwich construction.

The shear deformation of the core is depicted in Fig. 2.

In this section, a set of fully-coupled electromechanical governing equations for the
sandwich beam is formulated. In order to simplify the formulation procedure, the
following assumptions are introduced:

1. In each layer, the normal stress, ¢, is assumed to vanish.

2. Each layer is in a state of plane strain parallel to the x-z plane.

3. The piezoelectric material for this application is assumed to be transversely

isotropic. The piezoelectric constants are es;, e33 and e;s.
4. The interfaces between different layers are perfectly bonded.

5. The transverse displacements (i.e., the displacement along the z-direction) in the

layers are equal.

6. The top and bottom layers are assumed to be linear elastic Bernoulli-Euler

beams, namely, the transverse shear strains in the layers will be neglected. The



central core is assumed to be a Timoshenko beam, which allows transverse shear

deformation.
7. The sandwich beam is assumed to have unit width.

8. The two surfaces of piezoelectric layer are entirely covered with electrode. There-

fore, the electric potential will be independent of axial location.

Consider the kth layer of the sandwich beam. The displacement field and the

electrical potential in this layer are assumed to be of the form

a® = u®(z, t) + 20 ¥, ¢)

ok = w(z, t) (9)

Y = W + 2B )
where z(¥) is the thickness-coordinate with the origin located at the mid-plane of
the kth layer, ¢(¥) gives the rotation of the cross-section, ¥*) and wik) denote the
electrical potential and its gradient at the mid-plane of the kth layer, respéctively,
whereas u(¥) and w(® represent the displacements at the mid-plane of the kth layer in
the x- and z-directions, respectively. In the above equations, the electrical potential

and its gradient are set to vanish for the non-piezoelectric layers.

The above expressions for the displacements in each layer can be used to calculate

the strain components. According to assumption 6, the strain components can be

obtained as
L = du® oy Qw
z T 0z 0z?
(10)
1(:;;) =0,

for k = 1, 3 (the face sheets). Note that for the Bernoulli-Euler beam, ¢(*) = —%%.

For the piezoelectric core, the strain components can be similarly written as

@ = 0u9 L 9 0¢Y
£ = O

(11)
"W =g+ 9u,




where superscript (c) instead of “2" is used.

The electrical potential for the top and bottom layers vanishes as stated before.
The electrical variables are involved only in the piezoelectric core. For simplicity,
superscript (c) for electrical variables is neglected. The electrical field intensity for the

piezoelectric core can be obtained using Eqs. (2) and (9)

E. =0
E, =0 (12)
Ez = —1/’1 .

The reduced stress-strain relation for the face sheets is

o® = QW) e k=1, 3), (13)
2

(k)

where Q(l’:) =¥ - 91&)— Using Eq. (1) and assumptions 1 and 2, the constitutive
C33

equations for the piezoelectric core can be derived. We have

ot = Q5

(14)
o) = Q%Y - esE.,
for the stress components and
D, = e%eld
D, =0 (15)

D, =enE, + 615’)’(°)

rz )

for the electrical-displacement components, where

E €13 T C13 €31
Q33 = C33 — — €33 = €33 —
(53] 11
2
E z €31
Qss = css €33 = €33 + —,
11

are newly defined material constants.

The kinetic energy per unit length of the kth layer can be obtained as

b _ L ima e
T® =Sp [, 1@ +47dzY, (16)
-y |



where ¢ and p, are the thickness and the density of the kth layer, respectively. The
local kinetic energy T(®) can be expressed in terms of the displacement components at
the mid-plane of the kth layer, ul*), w® (= w), and the rotation ¢* by integrating

the above expression

1 1
TH — —z-pk ts [(u(") + w2] + —4 Pk t3 (qb(k)) (17)
Note that for the face sheets (k = 1, 3), ¢¥ = %L—U The total kinetic energy per

unit length of the sandwich beam is

T=YT®, (18)
k

A similar expression for the electrical enthalpy of the sandwich beam based upon

Egs. (10-15) can be written as

H=Y H®, (19)
k
where ,
1 k), 1 2
H® = S QW u () + ol (587, (20)

for k = 1, 3, and

1 c (c)
HO = SQht(8l) + Qsata(%;) + 2 QB (49 + Guy
+e15 Y tc(¢(c) + %%) - 5511‘1’1 t, (21)

for the piezoelectric core.

In order to simplify the formulation, the top and bottom face sheets are assumed to
have the same thickness, t, the same mass density, p, and the same mechanical prop-
erties (Qu = QE‘Q{) = @Q11). The thickness and mass density of the piezoelectric core
are denoted as t. and p., respectively. The interface condition on the displacements
given by Eqgs. (9) leads to

d) = @ 4

) (22)

-+
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Using the above equation, u!) and u® can be eliminated from Eqs. (18) and (19).
Accordingly, the kinetic-energy function T and the electrical enthalpy of the sandwich
beam can be written in terms of the in-plane displacement u(®), transverse displacement

w, local rotation ¢(¢), and the electrical field variable ;. The result is

1 . 1 .
T = (pt+§pct)u“ +3pt3(§ﬁg) + (pt + 5 pete) (w)°

tt? 2\ (R ¢ 0w (e
(L;L+3ﬁ£)¢” - ”}%g‘{;cb“, (23)

and

1 (c)
H = (Qllt+—Q§3t)(?—3“"> +3Qutt (2% - SQue ng_%a
(C) 1
FEQutt + o Q5 (280 +§Qfstc(¢°’+%%)
1
+e1s Y te (¢ +3—)——€11¢1 (24)

According to Eq. (4), the total virtual work W done by the applied forces and
prescribed surface charge for the sandwich beam can be assumed as follows
L 3 3 3
SW = /0 géwdz + 3 MW 5™ L 4 32 NB&u® (L 4 3 b gk |
k=1 k=1 k=1 25)
where q denotes the pressure acting along the transverse direction; M(*), N(*) and

Q® represent the applied moment, axial force and transverse shear force in the kth

layer, respectively.

Substituting Egs. (23-25) into Eq. (8), one may obtain the variational form of the

sandwich beam as

t, (L 1 1 .
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where M = M — (V) — NOY K o= —y) _ @ 4 (N0 NeyE,

N = ND £ NO L N and Q = Q) + Q"9 + Q©®). By taking variation of the
above equation and collecting terms for different independent kinematic variables, the

equations of motion of the sandwich beam are obtained as follows
2,,(c) 2,,(c)
(2Qut + QR )i = (20t +pet) T
1 3 ‘
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and associated boundary conditions at z = 0, L are

N=[2Qut+Q§3 )Qgﬂ] or 6ul? =0

PG 1
M = [( Q“tt2+'—Q33 )—g_'—‘Q‘Qutztcg_z;g] or 8¢9 =0
M, = ["_Qlltzt ‘%— + nglta%g‘] or 5(%‘;") =0 (28)
3 Pw _ ptit. 9 2 sPw L L e
Q [ pt 5z6t2 2 ot? 3 Qllt —873' + 5 Qllt tc—ailr

+Q&t. (69 + %%.’) + eistchy] or dw = 0.

The above expressions yield the necessary boundary conditions and the natural bound-

ary conditions.

3.2 Formulation of a Surface-Mounted Actuation Beam

For surface-mounted actuation beams, the poling directions of two piezoelectric
layers are assumed to be along the z-direction. The electric potentials applied to the

two piezoelectric layers have the same magnitude but opposite directions. Similar to



the above formulation of an adaptive sandwich beam, the governing equations of a
surface-mounted actuation beam can be obtained as follows
2,.(c) 2,.(¢c)
(2QE t+ Qut )% = (20t +p.t) T
1 4
E 3 0w
—[ Q¢ Q (t+1t)'t + S Quell G (29)

1 1 4 2
+[= 3*_ | 3 _0%'w d*w
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where Q,; is the reduced stiffness of the host structure, and

2
E _ ‘13 X _ €13 €33
1n = °nn - — €33 = €31 — y
C33 C33

are newly defined material constants. Unlike the sandwich beam, t. and t refer to
the thickness of the host structure and the thickness of each actuator for the surface-

mounted case, respectively.

The corresponding boundary conditions at z = 0, L can be obtained as

(o)
= [(2Qft + Qutc)%‘-x—] or 6ul® =0

1 1 1
M= [(QRE +5QR 0+ 1t + 5 QuiD §Y + X (¢ + t) ]
or §(%L) =0 (30)

_l a1 2 _1_ 3 63w
1

1
- (5 ﬁt3+§Qﬁ(t+t) t+—-—Qnt3)aw] or dw=0.

4 VERIFICATION OF THE FORMULATIONS

Figure 3 shows the geometries of an adaptive sandwich beam and a surface-
mounted actuation beam. Both beams are fixed at the end z = 0, and free at
the end z = L. In order to verify the effectiveness of the sandwich structure, the
actuation behavior of the sandwich beam is compared with that of the corresponding

surface-mounted actuation beam. The total thickness of the two piezoelectric layers




in the surface-mounted beam is equal to the thickness of the piezoelectric core in the
sandwich beam, and the beam thickness of the surface-mounted case is equal to the

sum of thicknesses of the top and bottom sheets of the sandwich beam.

The static solutions of the two beams under a concentrated load and electrical
voltage are formulated. The above formulations are verified by comparing the static

analytical solutions of the two beams with the corresponding finite element results.

4.1 Adaptive Sandwich Beam

It is very difficult to find general solutions for fully coupled electromechanical
governing equations of the sandwich beam. For the adaptive sandwich beam, a con-
centrated load, @, is applied at the free end. Voltage is applied at the top and bottom
surfaces of piezoelectric core as an actuation force. Considering the static case, the
time derivatives of all variables in the formulation are subject to vanish. According to

Eqgs. (27), the equations of motion for this static sandwich beam can be obtained as

0%ul)
orZ 0

() (c) 2
~20ue 2% 4 2Quit DO 4 0520 1 Zuy 0 (3
(c) 1
(5 Qutt2+—Q33t3)_Qr-'2'Q11t2tc%tg—
—sttc (d’(c) + '55) + €15 Eztc =0,

Assuming that the piezoelectric core is insulated on both ends, appropriate boundary

conditions for the cantilever sandwich beam can be obtained as

u|(:) 0o~ 0 ¢I(:)=0 =0 Ulr=0 = 0 %U—J‘x 0 =0
(o)
N=Q}9L-5-'z L =0 M1=——Q11t2t%—+ @ut’ ]Ix =0
M = [( Qu”2+—Q33 )—g——iQutztcw]luL:O (32)
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By applying the boundary conditions. Eqs. (32), to Egs. (31), a set of static analytical

solutions for the cantilever sandwich beam can be obtained as follows

u@ =

© _ o 3 cosh[A (L — r)] l
o = Ke{l cosh()\L b+ [\4 2t~ L)=@ (33)
v = K, Ks (r + sinh[A(L — z)] _ tanh(X L)}

Ky A cosh(A L) A
1 K, K 1,
3 (Tt - D35 - Lo)2Q,

where

. 1 1 5.3
[\ = —Qutt.(t. +t) + — QEt
K, 2Qu (tc +¢t) + T Qa3 t;

1
[\’2 = —Q11t2(4t + 3tc)

6
K; = éQ11t2t2+£Qf3tt‘Z’
Ky = ;(4t+3t QE ¢ (1+%)
Ky = 3}(2(4t+3t)Q§35t¢
Ks = 3}{4 (4t + 3t.)ers Est. + K;,?5Q+ %
K
' =g

are newly defined parameters.

The top and bottom layers of the sandwich beam are assumed to be aluminum,
and the central piezoelectric core is considered to be PZT5H material. The mechanical

properties of the two materials are shown in Table 1. The material constant Q1

can be calculated as Q;; = l_iyg for this case. The geometrical parameters of
the sandwich beam are assumed to be L = 10cm, t = 0.8cm and t. = 0.2 crﬁ.

The voltage applied between the top and bottom surfaces of the piezoelectric core is
V = 20 volts; accordingly, the electric field intensity within the piezoelectric core

can be expressed as F, = 3‘% Substituting the above numerical data into Egs. (33),



the transverse displacement, w, and local rotation, ¢!, can be obtained, as shown in

Fig. 4 and Fig. 5, respectively.

To verify the above theoretical model, finite element analysis is performed using
ANSYS code. Four-node linear plane-strain coupled elements are used for the piezo-
electric actuator; and four-node linear plane-strain structural elements are used for
the remaining part of the structure. The numerical data and boundary conditions
shown above are used in the analysis. The transverse displacement variations along
the axial locations by finite element analysis are also plotted in Fig. 4. It is clear
that the theoretical solutions match very well with the finite element results. Specif-
ically, the transverse displacement at the right tip for the finite element analysis is
1.1791 x 1073 cm. Compared to the theoretical solution (1.1961 x 107° ¢m), it has a

relative error of only 1.42%.

The variation of axial displacement along the transverse directi;)n is shown in Fig. 6.
It is ciear that the axial displacement varies linearly along the transverse direction.
This is in agreement with the displacement assumption of Egs. (9). For the axial
location of £ < 1cm, the amplitude of the axial displacement distributions through
the thickness increases along the axial location. For the axial location of z > 1cm,
the axial displacement distributions through the thickness are the same as shown in
Fig. 6. These results correspond to the variations of local rotation, ¢(°), aléng axial
locations (see Fig. 5). Therefore, it is concluded that the proposed theoretical model

can accurately predict behavior of the sandwich beam.

4.2 Surface-Mounted Actuation Beam

For the surface-mounted actuation beam, a concentrated load, @, is applied at the

free end. The voltages applied on the two piezoelectric layers have the same magnitude



but opposite directions. The time derivatives of all variables in the formulation are
subject to vanish for the static case. From Eq. (29), the governing equations of the
surface-mounted actuation beam can be simplified as

a2ule) _
0z ~
Jtw (34)

a7 = 0

The appropriate boundary conditions for the cantilever surface-mounted beam can be

written as
(@ _ _ dw - _ 9ul9 -
Ug=o =0 We=o =0 65|z =0 N = o ear =0
1 1
Q= [-(GQAL + 3QR( + 't + - Quid) Ty (35)

1 1 :
M = [(g 1E1t3 + §Qﬁ(t + tc) t + EQllts)%"Z - esﬁ(t + tc)th]|x=L =0.

Using the above governing equations and the associated boundary conditions, a set of
static analytical solutions of the surface-mounted actuation beam can be given as

ul) =0

(36)
= 5972+ i QL + eX(t + to)t B a?

where
QEt3 + %Qﬁ(t + )%t + —-Qut)

The geometrical parameters of the surface-mounted actuation beam are assumed to
be L = 10cm, t = 0.1cm and t. = l.6cm. The voltage applied to each of the
piezoelectric actuators is V = 10 volts. Setting @ = 0 and substituting the numerical
data into Egs. (36), the transverse displacement, w, is plotted as shown in Fig. 7.
Analogous to the sandwich beam, the corresponding finite element results are also
shown in Fig. 7. It is clear that the theoretical solution agrees very well with thé
finite element analysis. It should be noted that Eqgs. (36) are exactly the so-called

Bernoulli-Euler model by Crawley and Anderson® under plane strain conditions if

Q@ =0



5 STRESS DISTRIBUTIONS

In the above, the static solutions of the adaptive sandwich beam and the surface-
mounted actuation beam have been obtained. Using these results, the stress distribu-

tions within the two beams can be calculated.

For the adaptive sandwich beam, the stress distribution can be obtained using Eqgs.

(9-14) and Eq. (33)

( (c)
Qn[—éjggx—-% +t+2°?9—:‘ "%‘tSZS"'t-f

(c)
Oz = ¢ :%z—a—g;— —%SZS% (37)
(e) 2
\Qu[‘tfaz%*(z—t—gz‘)%;uz{] %SZS%-l-t
where agx nd g = can be obtained as

() Asinh[A(L - z)] K5

i —Y I xL-2@

Pow _ Ko 1
G = g tgL-0e.

The above formulation can be used to calculate the stress distribution at any location

0

51@

under either a mechanical force or an electrical load or both. Setting Q@ = 0, the
stress distribution under an electrical load is calculated as shown in Fig. 8. It is clear
that axial stress exists only for the range of ¢ < 1cm and vanishes for £ > 1cm.
This result also corresponds to variations of the local rotation, ¢, along the axial
locations. As shown in Fig. 5, the local rotation, ¢{°), reached a saturated value at
z = 1em; this means that the variation rate of the local rotation, Qgg, diminishes
for z > lcem. According to Eq. (37), axial stress vanishes for ¢ > 1¢m when no

mechanical load is applied.

For the surface-mounted actuation beam, the stress distribution can be similarly



obtained as

QR 9 - kB “h-tsos<-h
o = ~Q11282w —tf sz tf (38)
Qﬁ~aw+6315 %5 %+
where
Py _ _%x 4 ELI[QL + e (t + t)tE] .

Equation (38) may be used to calculate the stress distribution of the surface-
mounted actuation beam at any location under either a mechanical force or an elec-
trical load or both. Setting @ = 0, the stress distribution under an electrical load is
calculated as shown in Fig. 9. It should be noted that the axial stress distributions
are identical for any axial location. To verify the stress formulation for the surface-
mounted actuation beam, the stress distribution through the thickness at z = 5em
is compared with the finite element results, as shown in Fig. 10. It is clear that the

analytical solution agrees very well with the finite element analysis.

6 DISCUSSION AND CONCLUSION

A new adaptive sandwich structure is constructed using the shear mode of piezo-
electric materials. Governing equations for the proposed structure and its surface-
mounted counterpart are derived based on the variational principle. The static so-
lutions of a cantilever sandwich beam and its corresponding surface-mounted beam
are obtained based on the derived general formulations. The theoretical formulation
is verified by finite element analysis. Furthermore, stress distributions of the two

structures are also theoretically characterized.

The greatest advantage provided by the adaptive sandwich beam is its lower

stresses in the actuator. Since piezoceramics are very brittle, high stresses are detri-




mental to the structural integrity of the actuator. According to the results shown in
Fig. 8 and Fig. 9, it is evident that under electrical loading the level of axial stress
in the surface-mounted actuators is very high, and is negligible in the piezoelectric
core of the sandwich beam. The shear stresses for both structures under electrical
loading are negligible. For the case under mechanical loading, the overall axial-stress
distributions for both structures are similar.® However, the stress levels within the ac-
tuators for the two structures are very different due to their different locations along
the thickness directions. For the sandwich structure, the actuator sustains the low-
est bending stress level within the structure because the piezoelectric core is located
near the neutral plane of the beam. For the surface-mounted actuation beam, the
piezoelectric actuators bear the largest bending stress level in the structure since the

actuators are located at the farthest locations from the neutral plane.

Due to the high density and the brittleness of piezoelectric materials, it is impracti-
cal to use an entire piezoelectric layer in adaptive structures. If an entire piezoelectric
layer is employed in a large structure, the flexibility of the structure will be dramat-
ically reduced. However, the above formulations provide a basis for further study of

an adaptive sandwich with small piezoelectric patches.

ACKNOWLEDGMENT

This work was supported by AFOSR through grant F 49620-92-J-0457 to Purdue

University.



(1

3]

[5]

7 REFERENCES

E. Crawley and J. de Luis, 1987, “Use of piezoceramic actuators as elements of

intelligent structures”, AJAA Journal, Vol. 25, pp. 1373-1385.

K. Uchino, 1986, “Electrostrictive actuators: materials and applications”, Ce-

ramic Bulletin, Vol. 63, pp. 647-652.

E. Crawley and E. Anderson, “Detailed models of piezoelectric actuation of
beams”, Proceedings of 30th AIAA/ASME/SAE Structures, Structural Dynam-
ics, and Material Conference, Washington, DC, April 1989, pp. 2000-2010.

C. K. Lee, 1990, “Theory of laminated piezoelectric plates for the design of dis-
tributed sensors/actuators. part I: governing equations and reciprocal relation-

ships”, Journal of Acoustical Society of America, Vol. 87, pp. 1144-1158.

-M. Leibowitz and J. R. Vinson, 1993, “The Use of Hamilton’s Principle in Lami-

nated Piezoelectric and Composite Structures”, Adaptive Structures and Material
System AD-Vol. 35, Paper Presented at the 1993 ASME Winter Annual Meeting,
New Orleans, Louisiana, November 28-December 3, 1993, pp. 257-167.

C. T. Sun and X. D. Zhang, 1995, “Use of Thickness-Shear Mode in Constructing
Adaptive Sandwich Structure”, Smart Materials and Structures, Vol. 4; pp. 202-
206.

H. F. Tiersten, 1969, Linear Piezoelectric Plate Vibrations, Plenum Press, New

York, New York, pp. 33-39.



Table 1: Mechanical Properties for Computer Simulation

PZT5H Al

GPa C/m? GPa
C11 | €12 C13 C33 | C44 | €31 €33 €15 E v
126 | 79.5 | 84.1 | 117 | 23 | -6.5 | 23.3 | 17.0 | 70.3 | 0.345




Figure 1: Shear Mode of the Piezoelectric Core
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Figure 2: Schematic Diagram of the Sandwich Beam
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Figure 3: Adaptive Sandwich Beam (a) and Surface-Mounted Actuation Beam (b) of
Unit Width
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Figure 4: Transverse Displacement vs. Axial Location for the Sandwich Beam
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Figure 5: Local Rotation vs. Axial Location for the Sandwich Beam
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Figure 6: Axial Displacement of the Sandwich Beam By Finite Element Analysis




Figure 7: Transverse Displacement vs. Axial Location for the Surface-mounted Actu-

ation Beam
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Figure 8: Stress Distribution of the Sandwich Beam Under an Electrical Load







0.2 T ' T ' : : ' .'
—— Analytical Results | | [

m—— Finite Element Analysis:

0.1 b--ioemeee i e deae S S -
.

Axial Stress, MPa

-0.8 -0.4 0 0.4 0.8
Thickness, cm

Figure 10: Stress Distribution of the Surface-Mounted Beam Through the Thickness




